The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yung-Chung WANG(2hit)

1-2hit
  • Loss Information of Random Early Detection Mechanism

    Yung-Chung WANG  

     
    PAPER-Fundamental Theories

      Vol:
    E86-B No:2
      Page(s):
    699-708

    TCP congestion control is receiving increased attention in recent years due to their usefulness for network stability, robustness use of network buffer and bandwidth resources on an end-to-end per-connection basis. The RED scheme was designed for a network where a single dropped packet is sufficient to signal the presence of congestion to the TCP protocol. This paper applies matrix-analytic approach to analyze both the long-term and the short-term drop behaviors of a queue with RED scheme and uses this model to quantify the benefits brought about by RED. The result shows that the drop probability between RED and Drop-Tail is very close under heavy load conditions. This indicates that RED not only can resolve the synchronization problem but also has the same loss performance with Drop-Tail scheme under the heavy load circumstances. Our findings also show that the rate oscillation behavior of RED is better than Drop-Tail when TCP applies the additive-increase and multiplication-decrease mechanism. As a consequence, it can help reduce the required buffer capacity in the RED router.

  • End-to-End Call Admission Control in Service Guaranteed Networks

    Yung-Chung WANG  Chung-Chin LU  

     
    PAPER-Network

      Vol:
    E83-B No:4
      Page(s):
    791-802

    A per-connection end-to-end call admission control (CAC) problem is solved in this paper to allocate network resources to an input session to guarantee its quality of service (Qos) requirements. In conjunction with the solution of the CAC problem, a traffic descriptor is proposed to describe the loss rate and the delay bound Qos requirements of the connection to be set up as well as the statistical characteristics of the associated input traffic which is modeled as a linear mean function plus a (zero-mean) fractional Brownian motion. The information in the traffic descriptor is sufficient to determine the allocation of channel bandwidth and buffer space to the input traffic in a network which employs leaky bucket shapers and scheduling algorithms to guarantee the Qos requirements. The CAC problem is solved by an iterative algorithm of which there are two stages in each iteration: one is responsible for the search of a candidate end-to-end routing path and the other for the verification of the legitimacy of this candidate path to meet the Qos requirements and for the allocation of resources in such a legitimate path.