The search functionality is under construction.

Author Search Result

[Author] Yusuke HIOKA(7hit)

1-7hit
  • Improving Power Spectra Estimation in 2-Dimensional Areas Using Number of Active Sound Sources

    Yusuke HIOKA  Ken'ichi FURUYA  Yoichi HANEDA  Akitoshi KATAOKA  

     
    PAPER-Engineering Acoustics

      Vol:
    E94-A No:1
      Page(s):
    273-281

    An improvement of estimating sound power spectra located in a particular 2-dimensional area is proposed. We previously proposed a conventional method that estimates sound power spectra using multiple fixed beamformings in order to emphasize speech located in a particular 2-dimensional area. However, the method has one drawback that the number of areas where the active sound sources are located must be restricted. This restriction makes the method less effective when many noise source located in different areas are simultaneously active. In this paper, we reveal the cause of this restriction and determine the maximum number of areas for which the method is able to simultaneously estimate sound power spectra. Then we also introduce a procedure for investigating areas that include active sound sources to reduce the number of unknown power spectra to be estimated. The effectiveness of the proposed method is examined by experimental evaluation applied to sounds recorded in a practical environment.

  • Tracking of Speaker Direction by Integrated Use of Microphone Pairs in Equilateral-Triangle

    Yusuke HIOKA  Nozomu HAMADA  

     
    PAPER

      Vol:
    E88-A No:3
      Page(s):
    633-641

    In this report, we propose a tracking algorithm of speaker direction using microphones located at vertices of an equilateral triangle. The method realizes tracking by minimizing a performance index that consists of the cross spectra at three different microphone pairs in the triangular array. We adopt the steepest descent method to minimize it, and for guaranteeing global convergence to the correct direction with high accuracy, we alter the performance index during the adaptation depending on the convergence state. Through some computer simulation and experiments in a real acoustic environment, we show the effectiveness of the proposed method.

  • Voice Activity Detection with Array Signal Processing in the Wavelet Domain

    Yusuke HIOKA  Nozomu HAMADA  

     
    PAPER-Engineering Acoustics

      Vol:
    E86-A No:11
      Page(s):
    2802-2811

    In speech enhancement with adaptive microphone array, the voice activity detection (VAD) is indispensable for the adaptation control. Even though many VAD methods have been proposed as a pre-processor for speech recognition and compression, they can hardly discriminate nonstationary interferences which frequently exist in real environment. In this research, we propose a novel VAD method with array signal processing in the wavelet domain. In that domain we can integrate the temporal, spectral and spatial information to achieve robust voice activity discriminability for a nonstationary interference arriving from close direction of speech. The signals acquired by microphone array are at first decomposed into appropriate subbands using wavelet packet to extract its temporal and spectral features. Then directionality check and direction estimation on each subbands are executed to do VAD with respect to the spatial information. Computer simulation results for sound data demonstrate that the proposed method keeps its discriminability even for the interference arriving from close direction of speech.

  • Enhancement of Sound Sources Located within a Particular Area Using a Pair of Small Microphone Arrays

    Yusuke HIOKA  Kazunori KOBAYASHI  Ken'ichi FURUYA  Akitoshi KATAOKA  

     
    PAPER-Engineering Acoustics

      Vol:
    E91-A No:2
      Page(s):
    561-574

    A method for extracting a sound signal from a particular area that is surrounded by multiple ambient noise sources is proposed. This method performs several fixed beamformings on a pair of small microphone arrays separated from each other to estimate the signal and noise power spectra. Noise suppression is achieved by applying spectrum emphasis to the output of fixed beamforming in the frequency domain, which is derived from the estimated power spectra. In experiments performed in a room with reverberation, this method succeeded in suppressing the ambient noise, giving an SNR improvement of more than 10 dB, which is better than the performance of the conventional fixed and adaptive beamforming methods using a large-aperture microphone array. We also confirmed that this method keeps its performance even if the noise source location changes continuously or abruptly.

  • Estimation of Azimuth and Elevation DOA Using Microphones Located at Apices of Regular Tetrahedron

    Yusuke HIOKA  Nozomu HAMADA  

     
    LETTER-Speech/Acoustic Signal Processing

      Vol:
    E87-A No:8
      Page(s):
    2058-2062

    The proposed DOA (Direction Of Arrival) estimation method by integrating the frequency array data generated from microphone pairs in an equilateral-triangular microphone array is extended here. The method uses four microphones located at the apices of regular tetrahedron to enable to estimate the elevation angle from the array plane as well. Furthermore, we introduce an idea for separate estimation of azimuth and elevation to reduce the computational loads.

  • An Estimation Method of Sound Source Orientation Using Eigenspace Variation of Spatial Correlation Matrix

    Kenta NIWA  Yusuke HIOKA  Sumitaka SAKAUCHI  Ken'ichi FURUYA  Yoichi HANEDA  

     
    PAPER-Engineering Acoustics

      Vol:
    E96-A No:9
      Page(s):
    1831-1839

    A method to estimate sound source orientation in a reverberant room using a microphone array is proposed. We extend the conventional modeling of a room transfer function based on the image method in order to take into account the directivity of a sound source. With this extension, a transfer function between a sound source and a listener (or a microphone) is described by the superposition of transfer functions from each image source to the listener multiplied by the source directivity; thus, the sound source orientation can be estimated by analyzing how the image sources are distributed (power distribution of image sources) from observed signals. We applied eigenvalue analysis to the spatial correlation matrix of the microphone array observation to obtain the power distribution of image sources. Bsed on the assumption that the spatial correlation matrix for each set of source position and orientation is known a priori, the variation of the eigenspace can be modeled. By comparing the eigenspace of observed signals and that of pre-learned models, we estimated the sound source orientation. Through experiments using seven microphones, the sound source orientation was estimated with high accuracy by increasing the reverberation time of a room.

  • DOA Estimation of Speech Signal Using Microphones Located at Vertices of Equilateral Triangle

    Yusuke HIOKA  Nozomu HAMADA  

     
    PAPER-Audio/Speech Coding

      Vol:
    E87-A No:3
      Page(s):
    559-566

    In this paper, we propose a DOA (Direction Of Arrival) estimation method of speech signal using three microphones. The angular resolution of the method is almost uniform with respect to DOA. Our previous DOA estimation method using the frequency-domain array data for a pair of microphones achieves high precision estimation. However, its resolution degrades as the propagating direction being apart from the array broadside. In the method presented here, we utilize three microphones located at vertices of equilateral triangle and integrate the frequency-domain array data for three pairs of microphones. For the estimation scheme, the subspace analysis for the integrated frequency array data is proposed. Through both computer simulations and experiments in a real acoustical environment, we show the efficiency of the proposed method.