The search functionality is under construction.

Author Search Result

[Author] Yusuke TOKUDA(1hit)

1-1hit
  • Computing the Stabilization Times of Self-Stabilizing Systems

    Tatsuhiro TSUCHIYA  Yusuke TOKUDA  Tohru KIKUNO  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2245-2252

    A distributed system is said to be self-stabilizing if it converges to some legitimate state from an arbitrary state in a finite number of steps. The number of steps required for convergence is usually referred to as the stabilization time, and its reduction is one of the main performance issues in the design of self-stabilizing systems. In this paper, we propose an automated method for computing the stabilization time. The method uses Boolean functions to represent the state space in order to assuage the state explosion problem, and computes the stabilization time by manipulating the Boolean functions. To demonstrate the usefulness of the method, we apply it to the analysis of existing self-stabilizing algorithms. The results show that the method can perform stabilization time analysis very fast, even when an underlying state space is very huge.