1-1hit |
This paper proposes a scheme for reducing pilot interference in cell-free massive multiple-input multiple-output (MIMO) systems through scalable access point (AP) selection and efficient pilot allocation using the Grey Wolf Optimizer (GWO). Specifically, we introduce a bidirectional large-scale fading-based (B-LSFB) AP selection method that builds high-quality connections benefiting both APs and UEs. Then, we limit the number of UEs that each AP can serve and encourage competition among UEs to improve the scalability of this approach. Additionally, we propose a grey wolf optimization based pilot allocation (GWOPA) scheme to minimize pilot contamination. Specifically, we first define a fitness function to quantify the level of pilot interference between UEs, and then construct dynamic interference relationships between any UE and its serving AP sets using a weighted fitness function to minimize pilot interference. The simulation results shows that the B-LSFB strategy achieves scalability with performance similar to large-scale fading-based (LSFB) AP selection. Furthermore, the grey wolf optimization-based pilot allocation scheme significantly improves per-user net throughput with low complexity compared to four existing schemes.