The search functionality is under construction.

Author Search Result

[Author] Zhe LIU(8hit)

1-8hit
  • Collaborative Spectrum Sensing via L1/2 Regularization

    Zhe LIU  Feng LI  WenLei DUAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:1
      Page(s):
    445-449

    This letter studies the problem of cooperative spectrum sensing in wideband cognitive radio networks. Based on the basis expansion model (BEM), the problem of estimation of power spectral density (PSD) is transformed to estimation of BEM coefficients. The sparsity both in frequency domain and space domain is used to construct a sparse estimation structure. The theory of L1/2 regularization is used to solve the compressed sensing problem. Simulation results demonstrate the effectiveness of the proposed method.

  • Performance Analysis of Lunar Spacecraft Navigation Based on Inter-Satellite Link Annular Beam Antenna

    Lei CHEN  Ke ZHANG  Yangbo HUANG  Zhe LIU  Gang OU  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2016/01/29
      Vol:
    E99-B No:4
      Page(s):
    951-959

    The rapid development of a global navigation satellite system (GNSS) has raised the demand for spacecraft navigation, particularly for lunar spacecraft (LS). First, instead of the traditional approach of combining the united X-band system (UXB) with very-long-baseline interferometry (VLBI) by a terrestrial-based observing station in Chinese deep-space exploration, the spacecraft navigation based on inter-satellite link (ISL) is proposed because the spatial coverage of the GNSS downstream signals is too narrow to be used for LS navigation. Second, the feasibility of LS navigation by using ISL wide beam signals has been analyzed with the following receiving parameters: the geometrical dilution of precision (GDOP) and the carrier-to-noise ratio (C/N0) for satellites autonomously navigation of ISL and LS respectively; the weighting distance root-mean-square (wdrms) for the combination of both navigation modes. Third, to be different from all existing spacecraft ISL and GNSS navigation methods, an ISL annular beam transmitting antenna has been simulated to minimize the wdrms (1.138m) to obtain the optimal beam coverage: 16°-47° on elevation angle. Theoretical calculations and simulations have demonstrated that both ISL autonomous navigation and LS navigation can be satisfied at the same time. Furthermore, an onboard annular wide beam ISL antenna with optimized parameters has been designed to provide a larger channel capacity with a simpler structure than that of the existing GPS ISL spot beam antenna, a better anti-jamming performance than that of the former GPS ISL UHF-band wide band antenna, and a wider effectively operating area than the traditional terrestrial-based measurement. Lastly, the possibility and availability of applying an ISL receiver with an annular wide beam antenna on the Chinese Chang'E-5T (CE-5T) reentry experiment for autonomous navigation are analyzed and verified by simulating and comparing the ISL receiver with the practiced GNSS receiver.

  • Exposure Fusion Using a Relative Generative Adversarial Network

    Jinhua WANG  Xuewei LI  Hongzhe LIU  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2021/03/24
      Vol:
    E104-D No:7
      Page(s):
    1017-1027

    At present, the generative adversarial network (GAN) plays an important role in learning tasks. The basic idea of a GAN is to train the discriminator and generator simultaneously. A GAN-based inverse tone mapping method can generate high dynamic range (HDR) images corresponding to a scene according to multiple image sequences of a scene with different exposures. However, subsequent tone mapping algorithm processing is needed to display it on a general device. This paper proposes an end-to-end multi-exposure image fusion algorithm based on a relative GAN (called RaGAN-EF), which can fuse multiple image sequences with different exposures directly to generate a high-quality image that can be displayed on a general device without further processing. The RaGAN is used to design the loss function, which can retain more details in the source images. In addition, the number of input image sequences of multi-exposure image fusion algorithms is often uncertain, which limits the application of many existing GANs. This paper proposes a convolutional layer with weights shared between channels, which can solve the problem of variable input length. Experimental results demonstrate that the proposed method performs better in terms of both objective evaluation and visual quality.

  • Unambiguous S-Curve Shaping for Multipath Mitigation for BOC(1,1) Modulated Signals in GNSS

    Zhe LIU  Yangbo HUANG  Xiaomei TANG  Feixue WANG  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E98-B No:9
      Page(s):
    1924-1930

    A novel multipath mitigation algorithm for binary offset carrier (BOC) signals in the global navigation satellite system (GNSS) is presented. Based on the W2 code correlation reference waveform (CCRW) structure, a series of bipolar reference waveforms (BRWs) is introduced to shape the unambiguous s-curve. The resulted s-curve has a single stable zero-crossing point such that the tracking unambiguity in BOC (1,1) can be solved. At the same time, multipath mitigation capability is improved as well. As verified by simulations, the proposed method matches the multipath mitigation performance of W2 CCRW, and is superior to conventional receiver correlation techniques. This method can be applied in GPS L1 and Galileo E1.

  • End-to-End Exposure Fusion Using Convolutional Neural Network

    Jinhua WANG  Weiqiang WANG  Guangmei XU  Hongzhe LIU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/11/22
      Vol:
    E101-D No:2
      Page(s):
    560-563

    In this paper, we describe the direct learning of an end-to-end mapping between under-/over-exposed images and well-exposed images. The mapping is represented as a deep convolutional neural network (CNN) that takes multiple-exposure images as input and outputs a high-quality image. Our CNN has a lightweight structure, yet gives state-of-the-art fusion quality. Furthermore, we know that for a given pixel, the influence of the surrounding pixels gradually increases as the distance decreases. If the only pixels considered are those in the convolution kernel neighborhood, the final result will be affected. To overcome this problem, the size of the convolution kernel is often increased. However, this also increases the complexity of the network (too many parameters) and the training time. In this paper, we present a method in which a number of sub-images of the source image are obtained using the same CNN model, providing more neighborhood information for the convolution operation. Experimental results demonstrate that the proposed method achieves better performance in terms of both objective evaluation and visual quality.

  • AutoRobot: A Multi-Agent Software Framework for Autonomous Robots

    Zhe LIU  Xinjun MAO  Shuo YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/04/04
      Vol:
    E101-D No:7
      Page(s):
    1880-1893

    Certain open issues challenge the software engineering of autonomous robot software (ARS). One issue is to provide enabling software technologies to support autonomous and rational behaviours of robots operating in an open environment, and another issue is the development of an effective engineering approach to manage the complexity of ARS to simplify the development, deployment and evolution of ARS. We introduce the software framework AutoRobot to address these issues. This software provides abstraction and a model of accompanying behaviours to formulate the behaviour patterns of autonomous robots and enrich the coherence between task behaviours and observation behaviours, thereby improving the capabilities of obtaining and using the feedback regarding the changes. A dual-loop control model is presented to support flexible interactions among the control activities to support continuous adjustments of the robot's behaviours. A multi-agent software architecture is proposed to encapsulate the fundamental software components. Unlike most existing research, in AutoRobot, the ARS is designed as a multi-agent system in which the software agents interact and cooperate with each other to accomplish the robot's task. AutoRobot provides reusable software packages to support the development of ARS and infrastructure integrated with ROS to support the decentralized deployment and running of ARS. We develop an ARS sample to illustrate how to use the framework and validate its effectiveness.

  • A Privacy-Preserving Data Feed Scheme for Smart Contracts

    Hao WANG  Zhe LIU  Chunpeng GE  Kouichi SAKURAI  Chunhua SU  

     
    INVITED PAPER

      Pubricized:
    2021/12/06
      Vol:
    E105-D No:2
      Page(s):
    195-204

    Smart contracts are becoming more and more popular in financial scenarios like medical insurance. Rather than traditional schemes, using smart contracts as a medium is a better choice for both participants, as it is fairer, more reliable, more efficient, and enables real-time payment. However, medical insurance contracts need to input the patient's condition information as the judgment logic to trigger subsequent execution. Since the blockchain is a closed network, it lacks a secure network environment for data interaction with the outside world. The Data feed aims to provide the service of the on-chain and off-chain data interaction. Existing researches on the data feed has solved the security problems on it effectively, such as Town Crier, TLS-N and they have also taken into account the privacy-preserving problems. However, these schemes cannot actually protect privacy because when the ciphertext data is executed by the contract, privacy information can still be inferred by analyzing the transaction results, since states of the contract are publicly visible. In this paper, based on zero-knowledge proof and Hawk technology, a on-and-off-chain complete smart contract data feed privacy-preserving scheme is proposed. In order to present our scheme more intuitively, we combined the medical insurance compensation case to implement it, which is called MIPDF. In our MIPDF, the patient and the insurance company are parties involved in the contract, and the hospital is the data provider of data feed. The patient's medical data is sent to the smart contract under the umbrella of the zero-knowledge proof signature scheme. The smart contract verifies the proof and calculates the insurance premium based on the judgment logic. Meanwhile, we use Hawk technology to ensure the privacy of on-chain contract execution, so that no information will be disclosed due to the result of contract execution. We give a general description of our scheme within the Universal Composability (UC) framework. We experiment and evaluate MIPDF on Ethereum for in-depth analysis. The results show that our scheme can securely and efficiently support the functions of medical insurance and achieve complete privacy-preserving.

  • BFF R-CNN: Balanced Feature Fusion for Object Detection

    Hongzhe LIU  Ningwei WANG  Xuewei LI  Cheng XU  Yaze LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/05/17
      Vol:
    E105-D No:8
      Page(s):
    1472-1480

    In the neck part of a two-stage object detection network, feature fusion is generally carried out in either a top-down or bottom-up manner. However, two types of imbalance may exist: feature imbalance in the neck of the model and gradient imbalance in the region of interest extraction layer due to the scale changes of objects. The deeper the network is, the more abstract the learned features are, that is to say, more semantic information can be extracted. However, the extracted image background, spatial location, and other resolution information are less. In contrast, the shallow part can learn little semantic information, but a lot of spatial location information. We propose the Both Ends to Centre to Multiple Layers (BEtM) feature fusion method to solve the feature imbalance problem in the neck and a Multi-level Region of Interest Feature Extraction (MRoIE) layer to solve the gradient imbalance problem. In combination with the Region-based Convolutional Neural Network (R-CNN) framework, our Balanced Feature Fusion (BFF) method offers significantly improved network performance compared with the Faster R-CNN architecture. On the MS COCO 2017 dataset, it achieves an average precision (AP) that is 1.9 points and 3.2 points higher than those of the Feature Pyramid Network (FPN) Faster R-CNN framework and the Generic Region of Interest Extractor (GRoIE) framework, respectively.