1-2hit |
Ping GUO Zhenjiang MIAO Xiao-Ping ZHANG Zhe WANG
This paper discusses the task of human action detection. It requires not only classifying what type the action of interest is, but also finding actions' spatial-temporal locations in a video. The novelty of this paper lies on two significant aspects. One is to introduce a new graph based representation for the search space in a video. The other is to propose a novel sub-volume search method by Minimum Cycle detection. The proposed method has a low computation complexity while maintaining a high action detection accuracy. It is evaluated on two challenging datasets which are captured in cluttered backgrounds. The proposed approach outperforms other state-of-the-art methods in most situations in terms of both Precision-Recall values and running speeds.
Yanli WAN Zhenjiang MIAO Zhen TANG Lili WAN Zhe WANG
This letter proposes an efficient local descriptor for wide-baseline dense matching. It improves the existing Daisy descriptor by combining intensity-based Haar wavelet response with a new color-based ratio model. The color ratio model is invariant to changes of viewing direction, object geometry, and the direction, intensity and spectral power distribution of the illumination. The experiments show that our descriptor has high discriminative power and robustness.