The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Zhenyi BIAN(1hit)

1-1hit
  • Research on DoS Attacks Intrusion Detection Model Based on Multi-Dimensional Space Feature Vector Expansion K-Means Algorithm

    Lijun GAO  Zhenyi BIAN  Maode MA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/04/22
      Vol:
    E104-B No:11
      Page(s):
    1377-1385

    DoS (Denial of Service) attacks are becoming one of the most serious security threats to global networks. We analyze the existing DoS detection methods and defense mechanisms in depth. In recent years, K-Means and improved variants have been widely examined for security intrusion detection, but the detection accuracy to data is not satisfactory. In this paper we propose a multi-dimensional space feature vector expansion K-Means model to detect threats in the network environment. The model uses a genetic algorithm to optimize the weight of K-Means multi-dimensional space feature vector, which greatly improves the detection rate against 6 typical Dos attacks. Furthermore, in order to verify the correctness of the model, this paper conducts a simulation on the NSL-KDD data set. The results show that the algorithm of multi-dimensional space feature vectors expansion K-Means improves the recognition accuracy to 96.88%. Furthermore, 41 kinds of feature vectors in NSL-KDD are analyzed in detail according to a large number of experimental training. The feature vector of the probability positive return of security attack detection is accurately extracted, and a comparison chart is formed to support subsequent research. A theoretical analysis and experimental results show that the multi-dimensional space feature vector expansion K-Means algorithm has a good application in the detection of DDos attacks.