1-2hit |
Zhixian MA Jie ZHU Weitian LI Haiguang XU
Detection of cavities in X-ray astronomical images has become a field of interest, since the flourishing studies on black holes and the Active Galactic Nuclei (AGN). In this paper, an approach is proposed to detect cavities in X-ray astronomical images using our newly designed Granular Convolutional Neural Network (GCNN) based classifiers. The raw data are firstly preprocessed to obtain images of the observed objects, i.e., galaxies or galaxy clusters. In each image, pixels are classified into three categories, (1) the faint backgrounds (BKG), (2) the cavity regions (CAV), and (3) the bright central gas regions (CNT). And the sample sets are then generated by dividing large images into subimages with a window size according to the cavities' scale. Since the number of BKG samples are far more than the other types, to achieve balanced training sets, samples from the major class are split into subsets, i.e., granule. Then a group of three-convolutional-layer granular CNN networks without subsampling layers are designed as the classifiers, and trained with the labeled granular sample sets. Finally, the trained GCNN classifiers are applied to new observations, so as to estimate the cavity regions with a voting strategy and locate them with elliptical profiles on the raw observation images. Experiments and applications of our approach are demonstrated on 40 X-ray astronomical observations retrieved from chandra Data Archive (CDA). Comparisons among our approach, the β-model fitting and the Unsharp Masking (UM) methods were also performed, which prove our approach was more accurate and robust.
Hanxu YOU Zhixian MA Wei LI Jie ZHU
Traditional speech enhancement (SE) algorithms usually have fluctuant performance when they deal with different types of noisy speech signals. In this paper, we propose multi-task Bayesian compressive sensing based speech enhancement (MT-BCS-SE) algorithm to achieve not only comparable performance to but also more stable performance than traditional SE algorithms. MT-BCS-SE algorithm utilizes the dependence information among compressive sensing (CS) measurements and the sparsity of speech signals to perform SE. To obtain sufficient sparsity of speech signals, we adopt overcomplete dictionary to transform speech signals into sparse representations. K-SVD algorithm is employed to learn various overcomplete dictionaries. The influence of the overcomplete dictionary on MT-BCS-SE algorithm is evaluated through large numbers of experiments, so that the most suitable dictionary could be adopted by MT-BCS-SE algorithm for obtaining the best performance. Experiments were conducted on well-known NOIZEUS corpus to evaluate the performance of the proposed algorithm. In these cases of NOIZEUS corpus, MT-BCS-SE is shown that to be competitive or even superior to traditional SE algorithms, such as optimally-modified log-spectral amplitude (OMLSA), multi-band spectral subtraction (SSMul), and minimum mean square error (MMSE), in terms of signal-noise ratio (SNR), speech enhancement gain (SEG) and perceptual evaluation of speech quality (PESQ) and to have better stability than traditional SE algorithms.