The search functionality is under construction.

Author Search Result

[Author] Zijia HUANG(3hit)

1-3hit
  • Multicell Distributed Beamforming Based on the Altruistic and Egoistic Strategy with Local Channel State Information

    Zijia HUANG  Qinghai YANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/11/11
      Vol:
    E105-B No:5
      Page(s):
    617-628

    In this paper, the sum cell rate based on altruistic and egoistic multicell distributed beamforming (MDBF) is studied with local channel state Information (CSI). To start with, we provide two sufficient conditions for implementing altruistic and egoistic strategy based on the traditional method, and give the proof of those condition. Second, a MDBF method based on the altruistic and egoistic strategy is proposed, where the altruistic strategy is implemented with the internal penalty function. Finally, simulation results demonstrate that the effectiveness of the sufficient conditions and the proposed method has the different performance and advantages.

  • Multicell Distributed Beamforming Based on Gradient Iteration and Local CSIs

    Zijia HUANG  Xiaoxiang WANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:6
      Page(s):
    1058-1064

    In this paper, the multicell distributed beamforming (MDBF) design problem of suppressing intra-cell interference (InCI) and inter-cell interference (ICI) is studied. To start with, in order to decrease the InCI and ICI caused by a user, we propose a gradient-iteration altruistic algorithm to derive the beamforming vectors. The convergence of the proposed iterative algorithm is proved. Second, a metric function is established to restrict the ICI and maximize cell rate. This function depends on only local channel state information (CSI) and does not need additional CSIs. Moreover, an MDBF algorithm with the metric function is proposed. This proposed algorithm utilizes gradient iteration to maximize the metric function to improve sum rate of the cell. Finally, simulation results demonstrate that the proposed algorithm can achieve higher cell rates while offering more advantages to suppress InCI and ICI than the traditional ones.

  • Distance-Based Fair Resource Allocation Algorithm for Device-to-Device Multicast Communication in SFN System

    Wenrong GONG  Xiaoxiang WANG  Mingming LI  Zijia HUANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:1
      Page(s):
    252-259

    Device-to-device (D2D) multicast communication is a useful way to improve the communication efficiency of local services. This study considers a scenario of D2D multicast communication in a single frequency network (SFN) system and investigates the frequency resource allocation problem. Firstly, we propose that D2D user equipments (DUEs) do not share frequency with cellular user equipments (CUEs) in the same SFN, but reuse frequency with CUEs in other SFNs, by which the interference between D2D and cellular communications can be avoided. Then, under the principle that two nearest D2D multicast groups cannot reuse the same frequency, the study develops a distance-based fair frequency resource allocation (DFRA) algorithm. The DFRA algorithm ensures control of the interference within a reasonable range and fairly allocate the available frequency resources to the D2D multicast groups. Numerical simulation results show that the proposed resource allocation algorithm is effective in improving the data rate and reducing the outage probability for D2D communications.