1-3hit |
Zhaoxi FANG Xiaojing BAO Liangbin LI Zongxin WANG
In this paper, we consider a dual-hop wireless cooperative network with amplify-and-forward (AF) relaying. The output signal-to-noise ratio (SNR) at the destination of the AF cooperative networks is in the form of the sum of harmonic mean of the source-relay channel SNR and the relay-destination channel SNR. Instead of deriving the exact probability density function (PDF) of the output SNR, we study the series expansion of this PDF around zero. This result is then applied to evaluate the performance of the AF cooperative systems over Nakagami-m fading channels, and closed-form high-SNR approximations of the average symbol error rate (SER) and the outage probability are derived. Next, we investigate the optimal power allocation (OPA) among the source node and the relays to minimize the approximate SER as well as the outage probability. It is shown that the optimal power allocation depends on the channel m parameters and the ratio of the source-relay channel gain to the relay-destination gain. In addition to the optimal power allocation, we also propose a low complexity sub-optimal power allocation (SubOPA) scheme. The performance improvement with optimal and sub-optimal power allocation is analyzed and validated by numeric results. It is shown that equal power allocation is near optimal when the relays are close to the source, while significant performance improvement is observed by both the optimal and sub-optimal power allocation schemes when the relays are close to the destination.
Zhaoxi FANG Xiaolin ZHOU Yu ZHU Zongxin WANG
Selection relaying is a promising technique for practical implementation of cooperative systems with multiple relay nodes. However, to select the best relay, global channel knowledge is required at the selecting entity, which may result in considerable signaling overhead. In this paper, we consider the relay selection problem in dual-hop amplify-and-forward (AF) communication systems with partial channel state information (CSI). Relay selection strategies aiming at minimizing either the outage probability or the bit error rate (BER) with quantized CSI available are presented. We also propose a target rate based quantizer to efficiently partition the SNR range for outage minimized relay selection, and a target BER based quantizer for BER minimized relay selection. Simulation results show that near optimal performance is achievable with a few bits feedback to the selecting entity.
Zhaoxi FANG Liangbin LI Zongxin WANG
This letter studies the asymptotic bit error rate (BER) performance of multihop communication systems with amplify-and-forward relaying over Nakagami-m fading channels. Since it is difficult to find the exact probability density function (PDF) of the output signal-to-noise ratio (SNR) at the destination, we resort to the series expansion of this PDF in the neighborhood of zero. Building upon this result, a closed-form expression for the average BER in the high SNR region is derived. Numeric results show that the derived asymptotic BER expression is accurate at medium and high SNR for both independent identically distributed (i.i.d.) and independent non-identically distributed (i.n.i.d.) channels.