The search functionality is under construction.

Author Search Result

[Author] brahim HOKELEK(2hit)

1-2hit
  • Strict Prioritization of New Requests over Retransmissions for Enhancing Scalability of SIP Servers

    Demir Y. YAVAS  Ibrahim HOKELEK  Bilge GUNSEL  

     
    PAPER

      Vol:
    E97-B No:12
      Page(s):
    2680-2688

    As the quantity of mobile application traffic keeps increasing, operators are facing the scalability limits of VoIP protocols. Higher queuing delays at the Session Initiation Protocol (SIP) server create significantly more retransmissions in the network. When the message arrival rate including retransmissions exceeds the message serving capacity of a SIP server, the queue size increases and eventually the SIP server can crash. Our analysis demonstrates that server crash can be prevented if the buffer size of the SIP server is limited. However, having smaller buffer sizes yields side effects such as lower successful transaction ratio for bursty traffic. In this paper, we propose a new SIP server scheduling mechanism in which the original incoming SIP requests have strict priority over the retransmitted requests. The priority based scheduling mechanism provides network administrator with the ability to configure the buffer size of a SIP server to a moderately high value. We implement the proposed priority-based scheduling mechanism in the JAIN-SIP stack and confirm that the implementation requires minimal changes to the SIP standard. Numerical experiments show that the proposed scheduling mechanism provides significantly and consistently better scalability at high buffer sizes compared to the heavily used first-in-first-out scheduling, thus enabling us to avoid server overloads.

  • Available Bit Rate Traffic Engineering in MPLS Networks with Flow-Based Multipath Routing

    Nail AKAR  brahim HOKELEK  Ezhan KARASAN  

     
    PAPER-Network

      Vol:
    E87-B No:10
      Page(s):
    2913-2921

    In this paper, we propose a novel traffic engineering architecture for IP networks with MPLS backbones. In this architecture, two link-disjoint label switched paths, namely the primary and secondary paths, are established among every pair of IP routers located at the edges of an MPLS backbone network. As the main building block of this architecture, we propose that primary paths are given higher priority against the secondary paths in the MPLS data plane to cope with the so-called knock-on effect. Inspired by the ABR flow control mechanism in ATM networks, we propose to split traffic between a source-destination pair between the primary and secondary paths using explicit rate feedback from the network. Taking into consideration the performance deteriorating impact of packet reordering in packet-based load balancing schemes, we propose a traffic splitting mechanism that operates on a per-flow basis (i.e., flow-based multipath routing). We show via an extensive simulation study that using flow-based multipath traffic engineering with explicit rate feedback not only provides consistently better throughput than that of a single path but is also void of out-of-order packet delivery.