1-4hit |
It has been widely recognized that in compressed sensing, many restricted isometry property (RIP) conditions can be easily obtained by using the null space property (NSP) with its null space constant (NSC) 0<θ≤1 to construct a contradicted method for sparse signal recovery. However, the traditional NSP with θ=1 will lead to conservative RIP conditions. In this paper, we extend the NSP with 0<θ<1 to a scale NSP, which uses a factor τ to scale down all vectors belonged to the Null space of a sensing matrix. Following the popular proof procedure and using the scale NSP, we establish more relaxed RIP conditions with the scale factor τ, which guarantee the bounded approximation recovery of all sparse signals in the bounded noisy through the constrained l1 minimization. An application verifies the advantages of the scale factor in the number of measurements.
Haoran LI Binyu WANG Jisheng DAI Tianhong PAN
Homotopy algorithm provides a very powerful approach to select the best regularization term for the l1-norm minimization problem, but it is lack of provision for handling singularities. The singularity problem might be frequently encountered in practical implementations if the measurement matrix contains duplicate columns, approximate columns or columns with linear dependent in kernel space. The existing method for handling Homotopy singularities introduces a high-dimensional random ridge term into the measurement matrix, which has at least two shortcomings: 1) it is very difficult to choose a proper ridge term that applies to several different measurement matrices; and 2) the high-dimensional ridge term may accumulatively degrade the recovery performance for large-scale applications. To get around these shortcomings, a modified ridge-adding method is proposed to deal with the singularity problem, which introduces a low-dimensional random ridge vector into the l1-norm minimization problem directly. Our method provides a much simpler implementation, and it can alleviate the degradation caused by the ridge term because the dimension of ridge term in the proposed method is much smaller than the original one. Moreover, the proposed method can be further extended to handle the SVMpath initialization singularities. Theoretical analysis and experimental results validate the performance of the proposed method.
Akira HIRABAYASHI Norihito INAMURO Aiko NISHIYAMA Kazushi MIMURA
We propose a novel algorithm for the recovery of non-sparse, but compressible signals from linear undersampled measurements. The algorithm proposed in this paper consists of two steps. The first step recovers the signal by the l1-norm minimization. Then, the second step decomposes the l1 reconstruction into major and minor components. By using the major components, measurements for the minor components of the target signal are estimated. The minor components are further estimated using the estimated measurements exploiting a maximum a posterior (MAP) estimation, which leads to a ridge regression with the regularization parameter determined using the error bound for the estimated measurements. After a slight modification to the major components, the final estimate is obtained by combining the two estimates. Computational cost of the proposed algorithm is mostly the same as the l1-nom minimization. Simulation results for one-dimensional computer generated signals show that the proposed algorithm gives 11.8% better results on average than the l1-norm minimization and the lasso estimator. Simulations using standard images also show that the proposed algorithm outperforms those conventional methods.
Zaixing HE Takahiro OGAWA Miki HASEYAMA
In this paper, a novel algorithm, Cross Low-dimension Pursuit, based on a new structured sparse matrix, Permuted Block Diagonal (PBD) matrix, is proposed in order to recover sparse signals from incomplete linear measurements. The main idea of the proposed method is using the PBD matrix to convert a high-dimension sparse recovery problem into two (or more) groups of highly low-dimension problems and crossly recover the entries of the original signal from them in an iterative way. By sampling a sufficiently sparse signal with a PBD matrix, the proposed algorithm can recover it efficiently. It has the following advantages over conventional algorithms: (1) low complexity, i.e., the algorithm has linear complexity, which is much lower than that of existing algorithms including greedy algorithms such as Orthogonal Matching Pursuit and (2) high recovery ability, i.e., the proposed algorithm can recover much less sparse signals than even