The search functionality is under construction.

Keyword Search Result

[Keyword] AOA(10hit)

1-10hit
  • Phase Center Calibration for UWB Phase Interferometer Direction Finding by Virtual Baseline Open Access

    Jian BAI  Zhiqiang GE  Lu MA  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:10
      Page(s):
    1383-1386

    Phase interferometer using baseline composed by uniform linear array (ULA) with stable phase center for estimating the angle of arrival (AOA) is always employed in the direction finding (DF) system. However, the phase center of antenna element could vary with the incident angle, frequency, multipath and so on. To deal with these problems, a novel method is proposed in this paper to calibrate the phase center over ultra-wideband (UWB). Meanwhile, the restrictions of this method are discussed. Numerical simulations reveal that higher accuracy and larger unambiguous angle range can be obtained by the proposed method.

  • Hybrid TOA/AOA Geometrical Positioning Schemes Using Linear Lines of Position for Mobile Location

    Chien-Sheng CHEN  

     
    LETTER

      Vol:
    E98-A No:8
      Page(s):
    1676-1679

    To achieve more accurate measurements of the mobile station (MS) location, it is possible to integrate many kinds of measurements. In this paper we proposed several hybrid methods that utilized time of arrival (TOA) at seven base stations (BSs) and the angle of arrival (AOA) information at the serving BS to give location estimation of the MS in non-line-of-sight (NLOS) environments. Rather than applying the nonlinear circular lines of position (LOP), the proposed methods are easier by using linear LOP to determine the MS. In addition, the proposed methods can mitigate the NLOS effect, simply by applying the weighted sum of the intersections between different linear LOP and the AOA line, without requiring priori knowledge of NLOS error statistics. Simulation results show that the proposed methods can always yield superior performance in comparison with Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP) and the previous proposed methods employing circular LOP.

  • Geometrical Positioning Schemes Based on Hybrid Lines of Position

    Chien-Sheng CHEN  Jium-Ming LIN  Wen-Hsiung LIU  Ching-Lung CHI  

     
    LETTER-Signal Processing

      Vol:
    E95-D No:5
      Page(s):
    1336-1340

    To achieve more accurate measurements of the mobile station (MS) location, it is possible to integrate many kinds of measurements. In this paper we proposed several simpler methods that utilized time of arrival (TOA) at three base stations (BSs) and the angle of arrival (AOA) information at the serving BS to give location estimation of the MS in non-line-of-sight (NLOS) environments. From the viewpoint of geometric approach, for each a TOA value measured at any BS, one can generate a circle. Rather than applying the nonlinear circular lines of position (LOP), the proposed methods are much easier by using linear LOP to determine the MS. Numerical results demonstrate that the calculation time of using linear LOP is much less than employing circular LOP. Although the location precision of using linear LOP is only reduced slightly. However, the proposed efficient methods by using linear LOP can still provide precise solution of MS location and reduce the computational effort greatly. In addition, the proposed methods with less effort can mitigate the NLOS effect, simply by applying the weighted sum of the intersections between different linear LOP and the AOA line, without requiring priori knowledge of NLOS error statistics. Simulation results show that the proposed methods can always yield superior performance in comparison with Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP).

  • Weighted-Average Based AOA Parameter Estimations for LR-UWB Wireless Positioning System

    Yong Up LEE  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:12
      Page(s):
    3599-3602

    A signal model and weighted-average based estimation techniques are proposed to estimate the angle-of-arrival (AOA) parameters of multiple clusters for a low data rate ultrawide band (LR-UWB) based wireless positioning system. The optimal AOA estimation techniques for the LR-UWB wireless positioning system according to the cluster condition are introduced and it is shown that the proposed techniques are superior to the conventional technique from the standpoint of performance.

  • Mobile Location Estimation in Wireless Communication Systems

    Chien-Sheng CHEN  Szu-Lin SU  Yih-Fang HUANG  

     
    LETTER

      Vol:
    E94-B No:3
      Page(s):
    690-693

    The objective of wireless location is to determine the mobile station (MS) location in a wireless cellular communications system. When signals are propagated through non-line-of-sight (NLOS) paths, the measurements at the base stations (BSs) contain large errors which result in poor detectability of an MS by the surrounding BSs. In those situations, it is necessary to integrate all available heterogeneous measurements to improve location accuracy. This paper presents hybrid methods that combine time of arrival (TOA) at three BSs and angle of arrival (AOA) information at the serving BS to obtain a location estimate for the MS. The proposed methods mitigate the NLOS effect by using the weighted sum of the intersections between three TOA circles and the AOA line without requiring the a priori knowledge of NLOS error statistics. Numerical results show that all positioning methods offer improved estimation accuracy over those which rely on the two circles and two lines. The proposed methods always achieve better location accuracy than the Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP) do, regardless of the NLOS error statistics.

  • Hybrid TOA/AOA Geometrical Positioning Schemes for Mobile Location

    Chien-Sheng CHEN  Szu-Lin SU  Yih-Fang HUANG  

     
    PAPER

      Vol:
    E92-B No:2
      Page(s):
    396-402

    In this paper we present hybrid positioning schemes that combine time of arrival (TOA) and angle of arrival (AOA) measurements from only two base stations (BSs) to locate the mobile station (MS) in non-line-of-sight (NLOS) environments. The proposed methods utilize two TOA circles and two AOA lines to find all the possible intersections to locate the MS without requiring a priori information about the NLOS error. The commonly known Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP) have convergence problems, and the relative positioning between the MS and the BSs greatly affects the location accuracy. The resulting geometry creates a situation where small measurement errors can lead to significant errors in the estimated MS location. Simulation results show that the proposed methods always perform better than TSA and HLOP for different levels of NLOS errors, particularly when the MS/BSs have an undesirable geometric layout.

  • An Efficient AOA Estimation Scheme Based on Cyclic Pilot Symbols for Positioning of Mobile Objects in Indoor Environments

    Sekchin CHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:3
      Page(s):
    943-946

    The conventional AOA estimation schemes assume multiple antennas, which usually causes high-cost estimation systems. Moreover, the schemes are very vulnerable to multi-path interferences. In this letter, a novel scheme is proposed for the efficient AOA estimation. The scheme is based on cyclic pilot symbols, which guarantees the use of a single antenna and the robustness over multi-path interferences.

  • Accurate Angle-of-Arrival Estimation Method in Real System by Applying Calibration and Spatial Smoothing

    Panarat CHERNTANOMWONG  Jun-ichi TAKADA  Hiroyuki TSUJI  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:10
      Page(s):
    2915-2925

    Although subspace-based methods for estimating the Angle of Arrival (AOA) require a precise array response to achieve highly accurate results, it is difficult to obtain this response in practice even though the antennas are calibrated. Therefore, a method of compensating for errors in calibration is required. This paper proposes a procedure to enable precise AOA estimates to be obtained in a real system by applying array calibration and spatial smoothing preprocessing (SSP). Measured data were collected from experiments using two scenarios, i.e., in an anechoic chamber and at an open site, where a single source signal arrived at the array antenna. All measured data were then calibrated by using data obtained at 0 deg in an anechoic chamber before the AOAs were estimated. Nevertheless, errors in the array response remained after calibration because errors in the AOA estimates could still be observed. SSP was then applied to the calibrated data to obtain more accurate AOA estimates. We found that SSP can reduce the random error in an array response obtained in a real system, leading to reduced errors in AOA estimates in the observed data. To generalize the problem that SSP can reduce random perturbation in the array response, simple expressions are illustrated and verified by Monte-Carlo simulation. Random gain and phase errors in the array response are only considered in this paper and ESPRIT was used to estimate the AOAs.

  • Performance Evaluation of Next Generation Free-Space Optical Communication System

    Kamugisha KAZAURA  Kazunori OMAE  Toshiji SUZUKI  Mitsuji MATSUMOTO  Edward MUTAFUNGWA  Tadaaki MURAKAMI  Koichi TAKAHASHI  Hideki MATSUMOTO  Kazuhiko WAKAMORI  Yoshinori ARIMOTO  

     
    PAPER

      Vol:
    E90-C No:2
      Page(s):
    381-388

    Free-space optical communication systems can provide high-speed, improved capacity, cost effective and easy to deploy wireless networks. Experimental investigation on the next generation free-space optical (FSO) communication system utilizing seamless connection of free-space and optical fiber links is presented. A compact antenna which utilizes a miniature fine positioning mirror (FPM) for high-speed beam control and steering is described. The effect of atmospheric turbulence on the beam angle-of-arrival (AOA) fluctuations is shown. The FPM is able to mitigate the power fluctuations at the fiber coupling port caused by this beam angle-of-arrival fluctuations. Experimental results of the FSO system capable of offering stable performance in terms of measured bit-error-rate (BER) showing error free transmission at 2.5 Gbps over extended period of time and improved fiber received power are presented. Also presented are performance results showing stable operation when increasing the FSO communication system data rate from 2.5 Gbps to 10 Gbps as well as WDM experiments.

  • A Pilot Assisted Beamforming Scheme with Interference Resistant Angle of Arrival Estimation for OFDM Systems

    Yung-Fang CHEN  Fang-Shuo TSENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:1
      Page(s):
    132-141

    In this paper, we propose an angle of arrival (AOA)-based beamforming structure with strong interference resistant capability for OFDM systems. First, we present novel interference resistant angle of arrival (AOA) estimation schemes for each multipath without training sequences or symbols as the pre-processing of the proposed structure. The generalized sidelobe canceler (GSC) structure is thus applied with the AOA information to avoid calculating the beamforming weight vector individually on a per subcarrier basis, wherein the GSC structure with the reduced-rank multistage Wiener filter (MSWF) is adopted. We also propose a signal transformation scheme to improve performance before the signals are fed into the GSC receiver. The proposed receiver offers better performance than the GSC form of the constrained Wiener filter-based receiver due to the faster convergence property of reduced rank processing and the signal transformation scheme.