The search functionality is under construction.

Keyword Search Result

[Keyword] ARIMA(5hit)

1-5hit
  • PRIGM: Partial-Regression-Integrated Generic Model for Synthetic Benchmarks Robust to Sensor Characteristics

    Kyungmin KIM  Jiung SONG  Jong Wook KWAK  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2022/04/04
      Vol:
    E105-D No:7
      Page(s):
    1330-1334

    We propose a novel synthetic-benchmarks generation model using partial time-series regression, called Partial-Regression-Integrated Generic Model (PRIGM). PRIGM abstracts the unique characteristics of the input sensor data into generic time-series data confirming the generation similarity and evaluating the correctness of the synthetic benchmarks. The experimental results obtained by the proposed model with its formula verify that PRIGM preserves the time-series characteristics of empirical data in complex time-series data within 10.4% on an average difference in terms of descriptive statistics accuracy.

  • Matrix Approach for the Seasonal Infectious Disease Spread Prediction

    Hideo HIROSE  Masakazu TOKUNAGA  Takenori SAKUMURA  Junaida SULAIMAN  Herdianti DARWIS  

     
    PAPER

      Vol:
    E98-A No:10
      Page(s):
    2010-2017

    Prediction of seasonal infectious disease spread is traditionally dealt with as a function of time. Typical methods are time series analysis such as ARIMA (autoregressive, integrated, and moving average) or ANN (artificial neural networks). However, if we regard the time series data as the matrix form, e.g., consisting of yearly magnitude in row and weekly trend in column, we may expect to use a different method (matrix approach) to predict the disease spread when seasonality is dominant. The MD (matrix decomposition) method is the one method which is used in recommendation systems. The other is the IRT (item response theory) used in ability evaluation systems. In this paper, we apply these two methods to predict the disease spread in the case of infectious gastroenteritis caused by norovirus in Japan, and compare the results obtained by using two conventional methods in forecasting, ARIMA and ANN. We have found that the matrix approach is simple and useful in prediction for the seasonal infectious disease spread.

  • The Software Reliability Model Using Hybrid Model of Fractals and ARIMA

    Yong CAO  Qingxin ZHU  

     
    LETTER-Software Engineering

      Vol:
    E93-D No:11
      Page(s):
    3116-3119

    The software reliability is the ability of the software to perform its required function under stated conditions for a stated period of time. In this paper, a hybrid methodology that combines both ARIMA and fractal models is proposed to take advantage of unique strength of ARIMA and fractal in linear and nonlinear modeling. Based on the experiments performed on the software reliability data obtained from literatures, it is observed that our method is effective through comparison with other methods and a new idea for the research of the software failure mechanism is presented.

  • Network Traffic Prediction Using Least Mean Kurtosis

    Hong ZHAO  Nirwan ANSARI  Yun Q. SHI  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E89-B No:5
      Page(s):
    1672-1674

    Recent studies of high quality, high resolution traffic measurements have revealed that network traffic appears to be statistically self similar. Contrary to the common belief, aggregating self-similar traffic streams can actually intensify rather than diminish burstiness. Thus, traffic prediction plays an important role in network management. In this paper, Least Mean Kurtosis (LMK), which uses the negated kurtosis of the error signal as the cost function, is proposed to predict the self similar traffic. Simulation results show that the prediction performance is improved greatly over the Least Mean Square (LMS) algorithm.

  • Wireless Traffic Modeling and Prediction Using Seasonal ARIMA Models

    Yantai SHU  Minfang YU  Oliver YANG  Jiakun LIU  Huifang FENG  

     
    PAPER-Network

      Vol:
    E88-B No:10
      Page(s):
    3992-3999

    Seasonal ARIMA model is a good traffic model capable of capturing the behavior of a network traffic stream. In this paper, we give a general expression of seasonal ARIMA models with two periodicities and provide procedures to model and to predict traffic using seasonal ARIMA models. The experiments conducted in our feasibility study showed that seasonal ARIMA models can be used to model and predict actual wireless traffic such as GSM traffic in China.