The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Asian languages(2hit)

1-2hit
  • Selected Topics from LVCSR Research for Asian Languages at Tokyo Tech

    Sadaoki FURUI  

     
    PAPER-Speech Processing

      Vol:
    E95-D No:5
      Page(s):
    1182-1194

    This paper presents our recent work in regard to building Large Vocabulary Continuous Speech Recognition (LVCSR) systems for the Thai, Indonesian, and Chinese languages. For Thai, since there is no word boundary in the written form, we have proposed a new method for automatically creating word-like units from a text corpus, and applied topic and speaking style adaptation to the language model to recognize spoken-style utterances. For Indonesian, we have applied proper noun-specific adaptation to acoustic modeling, and rule-based English-to-Indonesian phoneme mapping to solve the problem of large variation in proper noun and English word pronunciation in a spoken-query information retrieval system. In spoken Chinese, long organization names are frequently abbreviated, and abbreviated utterances cannot be recognized if the abbreviations are not included in the dictionary. We have proposed a new method for automatically generating Chinese abbreviations, and by expanding the vocabulary using the generated abbreviations, we have significantly improved the performance of spoken query-based search.

  • Integration of Multiple Bilingually-Trained Segmentation Schemes into Statistical Machine Translation

    Michael PAUL  Andrew FINCH  Eiichiro SUMITA  

     
    PAPER-Natural Language Processing

      Vol:
    E94-D No:3
      Page(s):
    690-697

    This paper proposes an unsupervised word segmentation algorithm that identifies word boundaries in continuous source language text in order to improve the translation quality of statistical machine translation (SMT) approaches. The method can be applied to any language pair in which the source language is unsegmented and the target language segmentation is known. In the first step, an iterative bootstrap method is applied to learn multiple segmentation schemes that are consistent with the phrasal segmentations of an SMT system trained on the resegmented bitext. In the second step, multiple segmentation schemes are integrated into a single SMT system by characterizing the source language side and merging identical translation pairs of differently segmented SMT models. Experimental results translating five Asian languages into English revealed that the proposed method of integrating multiple segmentation schemes outperforms SMT models trained on any of the learned word segmentations and performs comparably to available monolingually built segmentation tools.