The search functionality is under construction.

Keyword Search Result

[Keyword] BCH bound(5hit)

1-5hit
  • Galois Hulls of Cyclic Codes over Finite Fields

    Yang DING  Xiaohua LU  

     
    LETTER-Coding Theory

      Vol:
    E103-A No:1
      Page(s):
    370-375

    The Galois hull of linear code is defined to be the intersection of the code and its Galois dual. In this paper, we investigate the Galois hulls of cyclic codes over Fqr. For any integer s≤r, we present some sufficient and necessary conditions that cyclic codes have l-dimensional s-Galois hull. Moreover, we prove that a cyclic code C has l-dimensional s-Galois hull iff C has l-dimensional (r-s)-Galois hull. In particular, we also present the sufficient and necessary condition for cyclic codes with 1-dimensional Galois hulls and the relationship between cyclic codes with 1-dimensional Galois hulls and cyclic codes with Galois complementary duals. Some optimal cyclic codes with Galois hulls are obtained. Finally, we explicitly construct a class of cyclic codes with 1-Galois linear complementary dual over Fq3.

  • On Relationship between the Boston Bound and Well-Known Bounds for Cyclic Codes

    Junru ZHENG  Takayasu KAIDA  

     
    LETTER-Coding Theory

      Vol:
    E92-A No:10
      Page(s):
    2484-2486

    For a cyclic code, the BCH Bound and the Hartmann-Tzeng bound are two of well-known lower bounds for its minimum distance. New bounds are proposed by N. Boston in 2001, that depend on defining set of cyclic code. In this paper, we consider the between the Boston bound and these two bounds for non-binary cyclic codes from numerical examples.

  • A Note on a Lower Bound for Generalized Hamming Weights

    Tomoharu SHIBUYA  Kohichi SAKANIWA  

     
    PAPER-Coding Theory

      Vol:
    E84-A No:12
      Page(s):
    3138-3145

    A lower bound for the generalized Hamming weight of linear codes is proposed. The proposed bound is a generalization of the bound we previously presented and gives good estimate for generalized Hamming weight of Reed-Muller, some one point algebraic geometry, and arbitrary cyclic codes. Moreover the proposed bound contains the BCH bound as its special case. The relation between the proposed bound and conventional bounds is also investigated.

  • On the Minimum Distance of Concatenated Codes and Decoding Method up to the True Minimum Distance

    Toshiyuki KOHNOSU  Toshihisa NISHIJIMA  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory

      Vol:
    E80-A No:11
      Page(s):
    2111-2116

    Concatenated codes have many remarkable properties from both the theoretical and practical viewpoints. The minimum distance of a concatenated code is at least the product of the minimum distances of an outer code and an inner code. In this paper, we shall examine some cases that the minimum distance of concatenated codes is beyond the lower bound and get the tighter bound or the true minimum distance of concatenated codes by using the complete weight enumerator of the outer code and the Hamming weight enumerator of the inner code. Furthermore we propose a new decoding method based on Reddy-Robinson algorithm by using the decoding method beyond the BCH bound.

  • On the Performance of Algebraic Geometric Codes

    Tomoharu SHIBUYA  Hajime JINUSHI  Shinji MIURA  Kohichi SAKANIWA  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E79-A No:6
      Page(s):
    928-937

    In this paper, we show that the conventional BCH codes can be better than the AG codes when the number of check symbols is relatively small. More precisely, we consider an AG code on Cab whose number of check symbols is less than min {g+a, n-g}, where n and g denote the code length and the genus of the curve, respectively. It is shown that there always exists an extended BCH code, (i) which has the same designed distance as the Feng-Rao designed distance of the AG code and the code length and the rate greater than those of the AG code, or (ii) which has the same number of check symbols as that of the AG code, the designed distance not less than that of the AG code and the code length longer than that of the AG code.