The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Chebyshev synthesis(2hit)

1-2hit
  • Side-Lobe Reduced, Circularly Polarized Patch Array Antenna for Synthetic Aperture Radar Imaging

    Mohd Zafri BAHARUDDIN  Yuta IZUMI  Josaphat Tetuko Sri SUMANTYO   YOHANDRI  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1174-1181

    Antenna radiation patterns have side-lobes that add to ambiguity in the form of ghosting and object repetition in SAR images. An L-band 1.27GHz, 2×5 element proximity-coupled corner-truncated patch array antenna synthesized using the Dolph-Chebyshev method to reduce side-lobe levels is proposed. The designed antenna was sim-ulated, optimized, and fabricated for antenna performance parameter measurements. Antenna performance characteristics show good agree-ment with simulated results. A set of antennas were fabricated and then used together with a custom synthetic aperture radar system and SAR imaging performed on a point target in an anechoic chamber. Imaging results are also discussed in this paper showing improvement in image output. The antenna and its connected SAR systems developed in this work are different from most previous work in that this work is utilizing circular polarization as opposed to linear polarization.

  • A Compact Design of W-Band High-Pass Waveguide Filter Using Genetic Algorithms and Full-Wave Finite Element Analysis

    An-Shyi LIU  Ruey-Beei WU  Yi-Cheng LIN  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:8
      Page(s):
    1764-1771

    This paper proposes an efficient two-phase optimization approach for a compact W-band double-plane stepped rectangular waveguide filter design, which combines genetic algorithms (GAs) with the simplified transmission-line model and full-wave analysis. Being more efficient and robust than the gradient-based method, the approach can lead to a compact waveguide filter design. Numerical results show that the resultant waveguide filter design with 4 sections (total length 19.6 mm) is sufficient to meet the design goal and provides comparable performance to that with 8 sections (total length 35.6 mm) by the Chebyshev synthesis approach. Based on the present approach, nineteen compact high-pass waveguide filters have been implemented and measured at the W-band with satisfactory performance.