The search functionality is under construction.

Keyword Search Result

[Keyword] D2D(23hit)

21-23hit(23hit)

  • An Efficient Channel Estimation and CSI Feedback Method for Device-to-Device Communication in 3GPP LTE System

    Kyunghoon LEE  Wipil KANG  Hyung-Jin CHOI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:11
      Page(s):
    2524-2533

    In 3GPP (3-rd Generation Partnership Project) LTE (Long Term Evolution) systems, D2D (Device-to-Device) communication has been selected as a next generation study item. In uplink D2D communication that underlies LTE systems, uplink interference signals generated by CUE (Cellular User Equipment) have a profound impact on the throughput of DUE (D2D User Equipment). For that reason, various resource allocation algorithms which consider interference channels have been studied; however, these algorithms assume accurate channel estimation and feedback of D2D related links. Therefore, in order to estimate uplink channels of D2D communication, SRS (Sounding Reference Signal) defined in LTE uplink channel structure can be considered. However, when the number of interferes increases, the SRS based method incurs significant overheads such as side information, operational complexity, channel estimation and feedback to UE. Therefore, in this paper, we propose an efficient channel estimation and CSI (Channel State Information) feedback method for D2D communication, and its application in LTE systems. We verify that the proposed method can achieve a similar performance to SRS based method with lower operational complexity and overhead.

  • A New Non-data Aided Frequency Offset Estimation Method for OFDM Based Device-to-Device Systems

    Kyunghoon WON  Dongjun LEE  Wonjun HWANG  Hyung-Jin CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:4
      Page(s):
    896-904

    D2D (Device-to-Device) communication has received considerable attention in recent years as one of the key technologies for future communication systems. Among the typical D2D communication systems, FlashLinQ (FLQ) adopted single-tone OFDM (Orthogonal Frequency Division Multiplexing) transmission which enables wide-sense discovery and distributed channel-aware link scheduling. Although synchronization based on a CES (Common External Source) is basically assumed in FLQ, a means to support devices when they are unable to use a CES is still necessary. In most OFDM systems, CFO (Carrier Frequency Offset) induces ICI (Inter Channel Interference) which degrades overall system performance drastically. Especially in D2D systems, ICI can be amplified due to different path losses between link and a precise estimation and correction of CFO is very important. Many CFO estimation algorithms based on DA (Data Aided) and NDA (None Data Aided) were proposed for OFDM systems, but there are several constraint conditions on frequency synchronization in D2D systems. Therefore, in this paper, we propose a new NDA-CFO estimation method for OFDM based D2D systems. The proposed method is based on the characteristics of single-tone OFDM signal, and is composed of two estimation stages: initial estimation and feed-back estimation. In initial estimation, the estimation of CFO is obtained by using two correlation results in a symbol. Also, estimation range can be adaptively defined as the distance between the two windows. In feed-back estimation, the distance between the two correlation results is gradually increased by re-using the estimated CFO and the correlation results. Therefore, more precise CFO estimation can be obtained. A numerical analysis and performance evaluation verify that the proposed method has a large estimation range and achieves precise estimation performance compared to the conventional methods.

  • A Combined Power Control and Resource Allocation Scheme for D2D Communication Underlaying an LTE-Advanced System

    Jaheon GU  Sueng Jae BAE  Syed Faraz HASAN  Min Young CHUNG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:10
      Page(s):
    2683-2692

    The underlaying architecture of Device-to-device (D2D) communication supports direct communication between users by reusing the radio resources of the LTE-A system. Despite the co-channel interference between the conventional cellular user equipment (CUE) and the D2D communication user equipment (DUE), LTE-A system can improve the combined data rate of CUEs and DUEs through effective transmit power control and resource allocation schemes. In this paper, we propose a novel mechanism, which combines the resource allocation scheme with the transmit power control scheme to maximize the overall data rate (defined as the sum-rate in the paper). We perform system-level simulations to determine the effectiveness of the proposed mechanism in terms of increasing the sum-rate. The simulation result shows that the proposed mechanism can improve the sum-rate in an underlaying LTE-A system that supports D2D communication.

21-23hit(23hit)