The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] DTA prediction on heterogeneity(1hit)

1-1hit
  • MolHF: Molecular Heterogeneous Attributes Fusion for Drug-Target Affinity Prediction on Heterogeneity

    Runze WANG  Zehua ZHANG  Yueqin ZHANG  Zhongyuan JIANG  Shilin SUN  Guixiang MA  

     
    PAPER-Smart Healthcare

      Pubricized:
    2022/05/31
      Vol:
    E106-D No:5
      Page(s):
    697-706

    Recent studies in protein structure prediction such as AlphaFold have enabled deep learning to achieve great attention on the Drug-Target Affinity (DTA) task. Most works are dedicated to embed single molecular property and homogeneous information, ignoring the diverse heterogeneous information gains that are contained in the molecules and interactions. Motivated by this, we propose an end-to-end deep learning framework to perform Molecular Heterogeneous features Fusion (MolHF) for DTA prediction on heterogeneity. To address the challenges that biochemical attributes locates in different heterogeneous spaces, we design a Molecular Heterogeneous Information Learning module with multi-strategy learning. Especially, Molecular Heterogeneous Attention Fusion module is present to obtain the gains of molecular heterogeneous features. With these, the diversity of molecular structure information for drugs can be extracted. Extensive experiments on two benchmark datasets show that our method outperforms the baselines in all four metrics. Ablation studies validate the effect of attentive fusion and multi-group of drug heterogeneous features. Visual presentations demonstrate the impact of protein embedding level and the model ability of fitting data. In summary, the diverse gains brought by heterogeneous information contribute to drug-target affinity prediction.