1-7hit |
In this paper, we propose a model of a diversity receiver which uses an antenna whose antenna pattern can periodically change. We also propose a minimum mean square error (MMSE) based interference cancellation method of the receiver which, in principle, can suffer from the interference in neighboring frequency bands. Since the antenna pattern changes according to the sum of sinusoidal waveforms with different frequencies, the received signals are received at the carrier frequency and the frequencies shifted from the carrier frequency by the frequency of the sinusoidal waveforms. The proposed diversity scheme combines the components in the frequency domain to maximize the signal-to-noise power ratio (SNR) and to maximize the diversity gain. We confirm that the bit error rate (BER) of the proposed receiver can be improved by increase in the number of arrival paths resulting in obtaining path diversity gain. We also confirm that the proposed MMSE based interference canceller works well when interference signals exist and achieves better BER performances than the conventional diversity receiver with maximum ratio combining.
In this paper, we propose a periodic reactance time function for 2-element electronically steerable passive array radiator (ESPAR) antennas applicable to the receivers of both single-input multiple-output (SIMO) and multiple-input multiple-output (MIMO) systems with 2 outputs. Based on the proposed function, we evaluate the power patterns of the antenna for various distances between two antenna elements. Moreover, for the distances, we discuss the correlation properties and the strength of the two outputs to find the appropriate distance for the receiver. From the discussions, we can conclude that distances from 0.1 to 0.35 times the wavelength are effective in terms of receive diversity.
Katsuhisa ITO Akira AKIYAMA Makoto ANDO
ESPAR (Electronically Steerable Passive Array Radiator) antennas were proposed as candidates for low-cost analog adaptive beamforming. The radiation pattern is controlled in an azimuthal plane by variable reactors loaded on each passive element. This paper estimates the frequency bandwidth of an ESPAR antenna in a single beam scanning operation. Bandwidth in terms of gain is predicted statistically as functions of beam direction and dynamic range of variable reactance. The -3 dB bandwidth of 7-element ESPAR antennas can be about 30%, 25% and 15% for the range of reactance of -100Ω Xn 100Ω, -50Ω Xn 50Ω and -100Ω Xn 0Ω, respectively, while the improper choice of reactance sets results in narrow bandwidth less than 5%.
Qing HAN Keizo INAGAKI Kyouichi IIGUSA Robert SCHLUB Takashi OHIRA Masami AKAIKE
Harmonic distortions of a recently developed lightweight film-type ESPAR (Electronically Steerable Passive Array Radiator) antenna are investigated experimentally. These distortions arise from the nonlinearity of the varactor diodes that are directly integrated with the parasitic radiator elements to control the antenna's radiation pattern. A reactive-near-field measurement technique that employs low-interference probes in an ultra-small anechoic box is used to reduce experimental time and cost. An anti-series varactor pair is introduced and compared with the conventional single varactor. Consequently, an ESPAR antenna equipped with the anti-series varactor pair exhibits remarkable suppression of nonlinear distortion. In particular, the second- and the third-order harmonic is reduced by approximately 20 dB and 12 dB from the level of a single varactor type ESPAR antenna, respectively.
Qing HAN Keizo INAGAKI Kyouichi IIGUSA Robert SCHLUB Takashi OHIRA
Reactive near field reflection characteristics of commercial RF absorbers are investigated to determine the minimum size of a reactive-field anechoic box necessary for measuring the reactive near field of an ESPAR antenna. The reflectivity of the absorber placed in close proximity to an antenna is inversely proportional to the distance between the antenna and the absorber. For carbon filled urethane foam tapered absorbers, we find that the backscattered reflection characteristics mainly depend on their tapered height rather than the thickness of absorber base. As a result, we show that carbon filled urethane foam pyramidal and wave surface shaped absorbers can be used to make reactive-field anechoic boxes. A prototype of a reactive-field anechoic box is presented and the distance from the absorber to the antenna is reduced to a wavelength. The prototype is verified by comparing its performance with that obtained from a large anechoic chamber.
Blagovest SHISHKOV Jun CHENG Takashi OHIRA
The electronically steerable passive array radiator (ESPAR) antenna is one kind of the parasitic elements based single-port output antennas with several variable reactances. It performs analog aerial beamforming and none of the signals on its passive elements can be observed. This fact and one that is more important--the nonlinear dependence of the output of the antenna from adjustable reactances--makes the problem substantially new and not resolvable by means of conventional adaptive array beamforming techniques. A novel approach based on stochastic approximation theory is proposed for the adaptive beamforming of the ESPAR antenna as a nonlinear spatial filter by variable parameters, thus forming both beam and nulls. Two learning rate schedule were examined about output SINR, stability, convergence, misadjustment, noise effect, bias term, etc., and the optimal one was proposed. Further development was traced. Our theoretic study, simulation results and performance analysis show that the ESPAR antenna can be controlled effectively, has strong potential for use in mobile terminals and seems to be very perspective.
Blagovest SHISHKOV Jun CHENG Takashi OHIRA
The electronically steerable passive array radiator (ESPAR) antenna performs analog aerial beamforming that has only a single-port output and none of the signals on its passive elements can be observed. This fact and one that is more important--the highly nonlinear dependence of the output of the antenna from adjustable reactances--makes the problem substantially new and not resolvable by means of conventional adaptive array beamforming techniques. A novel approach based on stochastic approximation theory is proposed for the adaptive beamforming of the ESPAR antenna as a nonlinear spatial filter by variable parameters, thus forming both beam and nulls. Our theoretic study, simulation results and performance analysis show that the ESPAR antenna can be controlled effectively, has strong potential for use in mobile terminals and seems to be very perspective.