The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] GMS(9hit)

1-9hit
  • Performance of GMSK and Reed-Solomon Code Combinations

    LiDuan MA  David ASANO  

     
    PAPER-Communication Theory

      Vol:
    E88-A No:10
      Page(s):
    2863-2868

    This paper examines a coded Gaussian Minimum Shift Keying (GMSK) system which uses Reed-Solomon (RS) codes both in Additive White Gaussian Noise (AWGN) channels and Rayleigh fading channels. The performance of GMSK and RS code combinations is compared with the constraint that the transmitted signal bandwidth is constant. The coding gains were obtained using simulations and the best combination of GMSK and RS codes was found. The optimal code rates over AWGN and Rayleigh fading channels were also compared.

  • Turbo Equalization of GMSK Signals Using Noncoherent Frequency Detection

    Tomoya OKADA  Yasunori IWANAMI  

     
    PAPER-Digital Transmission

      Vol:
    E85-C No:3
      Page(s):
    473-479

    In this paper, we propose a turbo equalization scheme for GMSK signals with frequency detection. Although the channel is AWGN, there exists severe ISI (Inter-Symbol Interference) in the received signal due to the premodulation Gaussian baseband filter in the transmitter as well as the narrowband IF filter in the receiver. We regard these two filters as a real number inner convolutional encoder. The ISI equalizer for this inner encoder and the outer decoder for a RSC (Recursive Systematic Convolutional) code, are connected through a random (de-)interleaver. These inner and outer decoders generate the reliability values in terms of LLR (Log Likelihood Ratio), using MAP or SOVA algorithm with SISO (soft input and soft output). Moreover iterative decoding with the limitation of LLR values are employed between two decoders to achieve a turbo equalization for GMSK frequency detection. Through computer simulations, the proposed system shows the BER=10-5 at Eb/N0=8.8 dB, when we take BT=0.6 (IF filter bandwidth multiplied by symbol duration) with the iteration number of 3. This means 3.1 dB improvement compared with the conventional scheme where the inner ISI equalizer is concatenated with the outer hard decision Viterbi decoder.

  • Sequence Estimation for Digital FM

    Yasunori IWANAMI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:6
      Page(s):
    1613-1621

    Sequence estimation (SE) of narrow-band digital FM signals, such as CPFSK and GMSK, with non-coherent limiter/discriminator (L/D) and integrate and dump (I&D) detection is investigated in detail using both analysis and simulation. The BER is studied from approximate upper and lower bounds obtained through Chernoff bounding techniques and minimum error event path probability along with a Gaussian noise assumption for high SNR. Various IF filters and the dependence of the error probability upon modulation index are considered. The results show an optimum modulation index around h 0.55, and clearly demonstrate the effectiveness and limitations of sequence estimation.

  • Demodulation of CPFSK and GMSK Signals Using Digital Signal Processing DPLL with Sequence Estimator

    Yasunori IWANAMI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:1
      Page(s):
    26-35

    Phase locked loops (PLL's) are well known as a threshold extension demodulator for analogue FM signals. This capability may lead to the low bit error rate demodulation for digital FM signals. A PLL has also its native frequency tracking ability and is suited to the demodulation of the signals having large Doppler shifts, for example signals from Low Earth Orbit (LEO) satellites. In this paper, we study the demodulation scheme of Continuous Phase FSK (CPFSK) and Gaussian filtered MSK (GMSK) signals using a Digital Signal Processing type Digital PLL (DSP DPLL). First we propose a DSP DPLL completely equivalent to an Analog PLL (APLL). Next we adopt the sequence estimation scheme to compensate the Inter-Symbol Interference (ISI) associated with the finite loop bandwidth of the DSP DPLL. Through computer simulations it is clarified that the proposed DSP DPLL with sequence estimator can achieve better BER performance compared with the conventional Limiter Discriminator (LD) detection on the AWGN channel. We have also shown that the DSP DPLL with sequence estimator has excellent BER characteristics on Rician fading channels having actual large Doppler shifts.

  • Decoupled Carrier and Bit Clock Synchronizing Subsystems for the Coherent MSK/GMSK Receiver

    Alexander N. LOZHKIN  

     
    PAPER-Communication Terminal and Equipment

      Vol:
    E82-B No:9
      Page(s):
    1459-1469

    In digital modulation for mobile radio telephone services frequency modulation with continuous phase with small modulation indices (MSK/GMSK) is sometimes used. Extension of the synchronization subsystems' pulling band in a coherent receiver and reducing synchronization delay is important for the mobile communication. At this moment there are only two possible synchronization schemes for the coherent MSK/GMSK receiver: Costas and de Buda's. This paper presents a new method (a possible alternative to both of them) where the frequency discriminator with decoupled carrier and bit synchronizing subsystem are combined to handle the task. For comparison, this paper also describes performances of the Costas carrier recovery scheme, which is widely employed for MSK/GMSK coherent demodulation. Discrimination and fluctuation characteristics for frequency, phase, and symbol delay synchronization subsystems are shown and the BER degradation from the conventional Costas scheme is calculated. This paper demonstrates with simulation results that the proposed scheme improves RF carrier acquisition performances, and at the same time, for large signal-to-noise ratios (SNR's) provides similar or better tracking performances than the Costas one. While limited to higher SNR ratios, the proposed synchronization scheme is suitable for many applications and can be implemented with simpler circuitry, well suited to integrated circuit implementation.

  • DS/SS/GMSK with Differential Detection Over Multipath Reyleigh Fading Channels

    Isamu WAKAKI  Takayuki ISHIGURO  Takaya YAMAZATO  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    1957-1962

    This paper deals with performance evaluation of CDMA based on DS/SS/GMSK signaling with the differential detection over multipath Rayleigh fading channels. To demodulate DS/SS/GMSK signals, we consider differential detection, which does not need a carrier recovery. The bit-error-rate performance is evaluated in the presence of thermal noise and multipleaccess interferences under the multipath Rayleigh fading environment. To improve the performance, we also consider adoption of a RAKE receiver.

  • Performance of DS/GMSK/PSK Modulation with Four-Phase Correlator and Its Application to Demodulator LSI

    Yasuhiro YANO  Hisao TACHIKA  Tadashi FUJINO  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    2062-2070

    In this paper we propose a direct sequence spread spectrum (DS/SS) modulation method which employs Gaussian-filtered minimum shift keying (GMSK) and permits simple code acquisition. A transmitter which includes a conventional GMSK modulator and pseudo-noise (PN) code generator can achieve the proposed modulation method. The received signal can be demodulated by four-phase correlator which can obtain the correlation value of received signal even if phase difference exists between the transmitter and the receiver. The modulation method employs phase-shift-keying (PSK) by modulating the phase of transmitted PN code for data transmission. We carried out hardware experiments and the measured bit error performance ensures the validity of this modulation method. Then we designed and developed a demodulator LSI which is applicable to a modulation method such as the DS/GMSK/PSK. The LSI is suitable for demodulation of spreadspectrum signal which can be demodulated by four-phase correlator.

  • Performance of a Circularly Polarized Base-Station Antenna in a Microcellular Environment

    Alexander KUKUSHKIN  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1012-1017

    This paper presents an analytical study and computer-based model of radio wave polarization propagating through a microcell. It covers the following topics: the influence of random orientation of a handset terminal on the performance of communication systems using either a linearly or circularly polarized base-station antenna; an analysis of the computer-based simulation of the power response on different polarizations in a street-canyon microcell.

  • An Intercomparison between MSR and SI Retrieved Rain Rates

    Yuji OHSAKI  Masaharu FUJITA  

     
    LETTER-Satellite Communication

      Vol:
    E75-B No:5
      Page(s):
    422-426

    Rain rates are estimated from brightness temperature measured with a Microwave Scanning Radiometer (MSR) carried on board the Marine Observation Satellite 1 (MOS-1). Estimations are made using a rain rate retrieval algorithm based on a radiative-transfer model assuming rain spaced uniformly over the ocean. These values are compared with a Satellite-Derived Index of Precipitation Intensity (SI), which estimates the rain rate from visible and infrared images of a Geostationary Meteorological Satellite in conjunction with rain observation by a radar network of the Japan Meteorological Agency. Good correlation between MSR and SI derived rain rates validates the rain-rate retrieval algorithm.