The search functionality is under construction.

Keyword Search Result

[Keyword] HRRP(2hit)

1-2hit
  • Precession Parameters Estimation of Space Rotationally Symmetric Targets Based on HRRP Sequences

    Yizhe WANG  Yongshun ZHANG  Sisan HE  Yi RAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:9
      Page(s):
    1580-1584

    Precession angle and precession period are significant parameters for identifying space micro-motion targets. To implement high-accuracy estimation of precession parameters without any prior knowledge about structure parameters of the target, a parameters extraction method based on HRRP sequences is proposed. The precession model of cone-shaped targets is established and analyzed firstly. Then the projection position of scattering centers on HRRP induced by precession is indicated to be approximate sinusoidal migration. Sequences of scattering centers are associated by sinusoid extraction algorithm. Precession angle and precession period are estimated utilizing error function optimization at last. Simulation results under various SNR levels based on electromagnetic calculation data demonstrate validity of the proposed method.

  • Radar HRRP Target Recognition Based on the Improved Kernel Distance Fuzzy C-Means Clustering Method

    Kun CHEN  Yuehua LI  Xingjian XU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2015/06/08
      Vol:
    E98-D No:9
      Page(s):
    1683-1690

    To overcome the target-aspect sensitivity in radar high resolution range profile (HRRP) recognition, a novel method called Improved Kernel Distance Fuzzy C-means Clustering Method (IKDFCM) is proposed in this paper, which introduces kernel function into fuzzy c-means clustering and relaxes the constraint in the membership matrix. The new method finds the underlying geometric structure information hiding in HRRP target and uses it to overcome the HRRP target-aspect sensitivity. The relaxing of constraint in the membership matrix improves anti-noise performance and robustness of the algorithm. Finally, experiments on three kinds of ground HRRP target under different SNRs and four UCI datasets demonstrate the proposed method not only has better recognition accuracy but also more robust than the other three comparison methods.