1-2hit |
Huawei TAO Ruiyu LIANG Xinran ZHANG Li ZHAO
To discuss whether rotational invariance is the main role in spectrogram features, new spectral features based on local normalized center moments, denoted by LNCMSF, are proposed. The proposed LNCMSF firstly adopts 2nd order normalized center moments to describe local energy distribution of the logarithmic energy spectrum, then normalized center moment spectrograms NC1 and NC2 are gained. Secondly, DCT (Discrete Cosine Transform) is used to eliminate the correlation of NC1 and NC2, then high order cepstral coefficients TNC1 and TNC2 are obtained. Finally, LNCMSF is generated by combining NC1, NC2, TNC1 and TNC2. The rotational invariance test experiment shows that the rotational invariance is not a necessary property in partial spectrogram features. The recognition experiment shows that the maximum UA (Unweighted Average of Class-Wise Recall Rate) of LNCMSF are improved by at least 10.7% and 1.2% respectively, compared to that of MFCC (Mel Frequency Cepstrum Coefficient) and HuWSF (Weighted Spectral Features Based on Local Hu Moments).
Huawei TAO Ruiyu LIANG Cheng ZHA Xinran ZHANG Li ZHAO
To improve the recognition rate of the speech emotion, new spectral features based on local Hu moments of Gabor spectrograms are proposed, denoted by GSLHu-PCA. Firstly, the logarithmic energy spectrum of the emotional speech is computed. Secondly, the Gabor spectrograms are obtained by convoluting logarithmic energy spectrum with Gabor wavelet. Thirdly, Gabor local Hu moments(GLHu) spectrograms are obtained through block Hu strategy, then discrete cosine transform (DCT) is used to eliminate correlation among components of GLHu spectrograms. Fourthly, statistical features are extracted from cepstral coefficients of GLHu spectrograms, then all the statistical features form a feature vector. Finally, principal component analysis (PCA) is used to reduce redundancy of features. The experimental results on EmoDB and ABC databases validate the effectiveness of GSLHu-PCA.