The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IEEE 1609.4(3hit)

1-3hit
  • Priority Broadcast Modeling of IEEE 802.11p MAC with Channel Switching Operation

    Daein JEONG  

     
    PAPER-Network

      Pubricized:
    2019/03/05
      Vol:
    E102-B No:9
      Page(s):
    1895-1903

    In this paper, we propose multidimensional stochastic modeling of priority broadcast in Vehicular Ad hoc Networks (VANET). We focus on the channel switching operation of IEEE 1609.4 in systems that handle different types of safety messages, such as event-driven urgent messages and periodic beacon messages. The model considers the constraints imposed by the channel switching operation. The model also reflects differentiated services that handle different types of messages. We carefully consider the delivery time limit and the number of transmissions of the urgent messages. We also consider the hidden node problem, which has an increased impact on broadcast communications. We use the model in analyzing the relationship between system variables and performance metrics of each message type. The analysis results include confirming that the differentiated services work effectively in providing class specific quality of services under moderate traffic loads, and that the repeated transmission of urgent message is a meaningful countermeasure against the hidden node problem. It is also confirmed that the delivery time limit of urgent message is a crucial factor in tuning the channel switching operation.

  • Performance Analysis of Distributed Broadcasting in IEEE 802.11p MAC Protocol

    Daein JEONG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:6
      Page(s):
    1086-1094

    In this paper, we propose an analysis of broadcasting in the IEEE 802.11p MAC protocol. We consider multi-channel operation which is specifically designed for VANET (Vehicular Ad hoc Networks) applications. This protocol supports channel switching; the device alternates between the CCH (Control Channel) and the SCH (Service Channel) during the fixed synchronization interval. It helps vehicles with a single transceiver to access the CCH periodically during which time they acquire or broadcast safety-related messages. Confining the broadcasting opportunity to the deterministic CCH interval entails a non-typical approach to the analysis. Our analysis is carried out considering 1) the time dependency of the system behavior caused by the channel switching, 2) the mutual influence among the vehicles using a multi-dimensional stochastic process, and 3) the generation of messages distributed over the CCH interval. The proposed analysis enables the prediction of the successful delivery ratio and the delay of the broadcast messages. Furthermore, we propose a refinement of the analysis to take account of the effects of hidden nodes on the system performance. The simulation results show that the proposed analysis is quite accurate in describing both the delivery ratio and delay, as well as in reflecting the hidden node effects. The benefits derived from the distributed generation of traffic are also evidenced by the results of experiments.

  • Agent-Based Coordination Scheme for IEEE 802.11p Wireless Vehicular Networks

    Shiann-Tsong SHEU  Yen-Chieh CHENG  Ping-Jung HSIEH  Jung-Shyr WU  Luwei CHEN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:4
      Page(s):
    849-866

    Wireless access in the vehicular environment (WAVE) architecture of intelligent transportation system (ITS) has been standardized in the IEEE 802.11p specification and it is going to be widely deployed in many roadway environments in order to provide prompt emergency information and internet services. A typical WAVE network consists of a number of WAVE devices, in which one is the road-side-unit (RSU) and the others are on-board-units (OBUs), and supports one control channel (CCH) and one or more service channels (SCH) for OBU access. The CCH is used to transport the emergency messages and service information of SCHs and the SCHs could be used to carry internet traffic and non-critical safety traffic of OBUs. However, the IEEE 802.11p contention-based medium access control protocol would suffer degraded transmission efficiency if the number of OBUs contending on an SCH is large. Moreover, synchronizing all WAVE devices to periodically and equally access the CCH and an SCH will waste as much as 50% of the channel resources of the SCH [1]. As a solution, we propose an efficiency-improvement scheme, namely the agent-based coordination (ABC) scheme, which improves the SCH throughput by means of electing one OBU to be the agent to schedule the other OBUs so that they obtain the access opportunities on one SCH and access the other SCH served by RSU in a contention-free manner. Based on the ABC scheme, three different scheduling and/or relaying strategies are further proposed and compared. Numerical results and simulation results confirm that the proposed ABC scheme significantly promotes the standard transmission efficiency.