The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] MIMO-OTA(2hit)

1-2hit
  • Three-Dimensional Over-The-Air Assessment for Vertically Arranged MIMO Array Antennas

    Kun LI  Kazuhiro HONDA  Koichi OGAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    167-176

    This paper presents a new methodology of the over-the-air (OTA) assessment for vertically arranged multiple-input multiple-output (MIMO) array antennas. Particular emphasis is placed on how well handset MIMO antennas with a vertically arranged structure are characterized using the limited number of scatterers implemented in a fading emulator. First we studied the mechanism of the arrangement of scatterers on the variation of channel responses using a proposed three-dimensional analytical model. It is shown that the condition of a 3D-OTA with the prescribed parameters allows the correlation to be reduced, which permits the channel capacity to increase in the same manner that sufficient scatterers are distributed over the entire solid angle. Then the appropriate scatterers arrangement for a 3D-OTA instrument considering the number of DUT antenna elements and multipath characteristics is investigated. The analytical results show that a suitable scatterers arrangement can be determined for various conditions of multipath environments and numbers of array elements, and that the arrangement can be employed for designing an actual 3D-OTA apparatus.

  • Experimental Evaluation of the Propagation Environment Control Function in a Double-Layered Reverberation Chamber in a MIMO-OTA System

    Ichiro OSHIMA  Yoshio KARASAWA  

     
    PAPER-Radio Propagation

      Vol:
    E96-B No:10
      Page(s):
    2389-2398

    Reverberation chambers that easily create multipath-rich environments are suggested as test environments for the performance evaluation of multiple-input multiple-output (MIMO) terminals. However, the propagation environment characteristic is difficult to control in conventional reverberation chambers. In this paper, we propose an improved double-layered reverberation chamber to control the arrival wave distribution in addition to the cross-polarization power ratio (XPR). We show the design method of the double-layered reverberation chamber and the experimental results of the propagation environment control using our constructed measurement system.