The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] MMSE equalizer(3hit)

1-3hit
  • Channel Estimation Improvement with Frequency Domain MMSE Equalization for PCP-SC System

    Yafei HOU  Tomohiro HASE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:6
      Page(s):
    1690-1698

    In this paper, we propose a simple but effective way of improving the performance of channel estimation (CE) for pilot cyclic prefixed single carrier (PCP-SC) system. The proposed method utilizes the property that the shifting signal of the PCP pilot signal can also be utilized to estimate the channel information. The receiver can continuously estimate the channel information by just shifting the received pilot signal. Regardless of the signal-to-noise ratio (SNR) and the pilot type, the proposed method can achieve about a 1.72 dB performance gain in terms of the mean squared error (MSE) of channel estimation with a slight increase in computational complexity. The BER performance with the proposed CE improvement are evaluated in a multipath fading channel using a zero-forcing (ZF) equalizer and an minmum mean squared error (MMSE) equalizer by computer simulation. It is shown that the proposed CE improvment method using an MMSE equalizer which has an unbiased vlaue of noise variance (NV) estimator gives a promising BER performance. The proposed method also benefits the estimation of the SNR for the single carrier system.

  • A Low-Complexity Bock Linear Smoothing Channel Estimation for SIMO-OFDM Systems without Cyclic Prefix

    Jung-Lang YU  Chia-Hao CHEN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1076-1083

    Orthogonal frequency-division multiplexing (OFDM) systems often use a cyclic prefix (CP) to simplify the equalization design at the cost of bandwidth efficiency. To increase the bandwidth efficiency, we study the blind equalization with linear smoothing [1] for single-input multiple-output (SIMO) OFDM systems without CP insertion in this paper. Due to the block Toeplitz structure of channel matrix, the block matrix scheme is applied to the linear smoothing channel estimation, which equivalently increases the number of sample vectors and thus reduces the perturbation of sample autocorrelation matrix. Compared with the linear smoothing and subspace methods, the proposed block linear smoothing requires the lowest computational complexity. Computer simulations show that the block linear smoothing yields a channel estimation error smaller than that from linear smoothing, and close to that of the subspace method. Evaluating by the minimum mean-square error (MMSE) equalizer, the block linear smoothing and subspace methods have nearly the same bit-error-rates (BERs).

  • A Low Complexity MMSE Equalizer for OFDM Systems over Time-Varying Channels

    Shaoping CHEN  Guangfa DAI  Hongwen TANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    330-333

    A low complexity minimum mean squared error (MMSE) equalizer for orthogonal frequency division multiplexing (OFDM) systems over time-varying channels is presented. It uses a small matrix of dominant partial channel information and recursive calculation of matrix inverse to significantly reduce the complexity. Theoretical analysis and simulations results are provided to validate its significant performance or complexity advantages over the previously published MMSE equalizers.