The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] MR head(5hit)

1-5hit
  • Modeling of Readback Pulse Shape of GMR Head

    Weichun YE  Yuankai ZHENG  Seidikkurippu N. PIRAMANAYAGAM  Yu LIN  Victor Y. KRACHKOVSKY  

     
    PAPER

      Vol:
    E84-C No:9
      Page(s):
    1158-1164

    Two isolated pulse models, the Lorentzian-like and the Mixture model, were used to investigate the effect of GMR heads-media with different geometric and magnetic parameters on the readback pulse shape. The matching of these two models with an actual pulse was compared in detail. The dependence of the readback pulse shape of GMR head on the head-media parameters and non-linear distortions was discussed in this paper. When applying these models to evaluate the performance of a recording system, it is necessary to take into account of the difference between the linear superposition of the isolated pulse and the actual readback data pattern. It was suggested to linearize the captured isolated pulse in order to use the model correctly as a useful tool for evaluating the system performance.

  • Analytical Expressions for Shielded MR Head Response

    Hiroaki MURAOKA  Yoshihisa NAKAMURA  

     
    PAPER

      Vol:
    E84-C No:9
      Page(s):
    1165-1170

    Recording mechanism of perpendicular recording was examined using analytical expression of shielded AMR/GMR head response. Pulse shape, roll-off performance, and noise spectra were reasonably explained by the calculated head transfer functions. Comparison with the calculation based on the formulae showed several fundamental characteristics of perpendicular recording: no large media noise at low frequencies in magnetic sense, but simply due to a reflection of a head transfer function: no severe resolution degradation: negligible noise power directly arisen from soft magnetic underlayer. This method will provide a convenient design tool for perpendicular magnetic recording.

  • Baseline Shift in Readback Waves of MR Head for Single-Layer Perpendicular Recording Media

    Takahiro KUROSAWA  Naoki HONDA  Kazuhiro OUCHI  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1517-1521

    The origins of baseline shift were discussed considering the measured off-track properties using a wide write head with track widths of 97 µm and a narrow read head with track widths of 2.7 µm. The baseline shift increased when the read head was moved close to the track edge. Beyond the track edge, baseline shift decreased to negative values. The impulse response curve of the MR head to the perpendicular magnetization was estimated from the readback waves of the MIG head and the MR head. The response curve depended on the recorded track width. When the recorded track was narrow, the undershoot of the response curve was smaller than that of the head field based on the 2D double-gap ring head model with infinite track width. This small undershoot induces sensitivity of the DC-component of the recorded magnetization and causes the baseline shift. To calculate the readback waves of the MR head for single-layer perpendicular recording media with narrow-track recording, the effect from stray field at the recorded track edge must be included in the impulse response curve of read head.

  • Newly Developed Linear Signal Analysis and Its Application to the Estimation on Playback Voltage of Narrow Track GMR Heads at an Areal Density of 40 Gb/in2

    Minoru HASHIMOTO  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2227-2233

    Linear signal analysis (LSA) is the conventional method of estimating the playback voltage and pulse width in linearly operating shielded GMR heads. To improve the accuracy of LSA, a new, highly precise LSA which includes the effect of the magnetization distribution in the medium and inhomogeneous biasing by domain control magnets, was developed. Utilizing this new LSA to calculate the playback waveforms, the calculated peak voltage and pulse width were compared with the experimental values and agreement within 10% was obtained. As the result of estimation using the new LSA, it is considered that the use of a vertical-type spin-valve head will make it possible to achieve a recording areal density of 40 Gb/in2.

  • Vertical Magnetoresistive/Inductive Head

    Takuji SHIBATA  Munekatsu FUKUYAMA  Norio SAITO  Yoshitaka WADA  Yutaka SODA  

     
    INVITED PAPER

      Vol:
    E78-C No:11
      Page(s):
    1493-1498

    A vertical magnetoresistive (MR)/inductive head using the current bias technique has been developed for high-density magnetic recording. In this head, the sense current is orthogonal to the air-bearing surface (ABS). The area exposed at the ABS of the MR element is beneath the front lead, and the active area of the sensor is positioned behind that area. The MR element is composed of two permalloy films separated by a thin nonmagnetic material. The easy axis of the films is oriented parallel to the ABS and the films are magnetostatically coupled. The magnetic field created by the sense current is applied in the direction of the easy axis and the MR element is stabilized. In this head structure, no MR-element-stabilizing layer, such as an antiferromagnetic film or a hard magnetic film, is needed. Since the permalloy film beneath the front lead acts as a front flux guide, the signal flux propagates in the sensing area of the MR element behind the ABS. The new vertical MR head has the same electrical performance characteristics as the conventional horizontal MR head. The offtrack signal profile is symmetric against the track center because the magnetization of the two permalloy films rotates symmetrically in the signal-flux direction. The output signal level of this head is independent of the read trackwidth, which favors a narrow trackwidth. The exposed portion at the ABS is only connected to the common lead and is at ground potential. In this design, electrostatic breakdown does not occur and no corrosion is observed. Tests have shown that as the flying height is reduced, the error rate is reduced and noise does not increase. This head structure appears suitable for the near-contact recording of the near future.