The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Markov sources(4hit)

1-4hit
  • Lossless Data Compression via Substring Enumeration for k-th Order Markov Sources with a Finite Alphabet

    Ken-ichi IWATA  Mitsuharu ARIMURA  

     
    PAPER-Source Coding and Data Compression

      Vol:
    E99-A No:12
      Page(s):
    2130-2135

    A generalization of compression via substring enumeration (CSE) for k-th order Markov sources with a finite alphabet is proposed, and an upper bound of the codeword length of the proposed method is presented. We analyze the worst case maximum redundancy of CSE for k-th order Markov sources with a finite alphabet. The compression ratio of the proposed method asymptotically converges to the optimal one for k-th order Markov sources with a finite alphabet if the length n of a source string tends to infinity.

  • Evaluation of Maximum Redundancy of Data Compression via Substring Enumeration for k-th Order Markov Sources

    Ken-ichi IWATA  Mitsuharu ARIMURA  Yuki SHIMA  

     
    PAPER-Information Theory

      Vol:
    E97-A No:8
      Page(s):
    1754-1760

    Dubé and Beaudoin proposed a lossless data compression called compression via substring enumeration (CSE) in 2010. We evaluate an upper bound of the number of bits used by the CSE technique to encode any binary string from an unknown member of a known class of k-th order Markov processes. We compare the worst case maximum redundancy obtained by the CSE technique for any binary string with the least possible value of the worst case maximum redundancy obtained by the best fixed-to-variable length code that satisfies the Kraft inequality.

  • Construction of a Piecewise Linear One-Dimensional Map Generating an Arbitrary Prescribed Tree Source

    Yasutada OOHAMA  Mariko SUEMITSU  Tohru KOHDA  

     
    LETTER

      Vol:
    E86-A No:9
      Page(s):
    2251-2255

    We consider the problem of constructing nonlinear dynamical systems that realize an arbitrary prescribed tree sources. We give a construction of dynamical systems by using piecewise-linear maps. Furthermore, we examine the obtained dynamical system to show that the structure of the memory of tree sources is characterized with some geometrical property of the constructed dynamical systems. Using a similar method, we also construct a dynamical system generating an arbitrary prescribed reverse tree source and show that the obtained dynamical system has some interesting geometrical property explicitly reflecting the tree structure of the memory of the reverse tree source.

  • Vector Compaction Using Dynamic Markov Models

    Radu MARCULESCU  Diana MARCULESCU  Massoud PEDRAM  

     
    PAPER

      Vol:
    E80-A No:10
      Page(s):
    1924-1933

    This paper presents an effective and robust technique for compacting a large sequence of input vectors into a much smaller input sequence so as to reduce the circuit/gate level simulation time by orders of magnitude and maintain the accuracy of the power estimates. In particular, this paper introduces and characterizes a family of dynamic Markov trees that can model complex spatiotemporal correlations which occur during power estimation both in combinational and sequential circuits. As the results demonstrate, large compaction ratios of 1-2 orders of magnitude can be obtained without significant loss (less than 5% on average) in the accuracy of power estimates.