The search functionality is under construction.

Keyword Search Result

[Keyword] QPSK modulation(4hit)

1-4hit
  • QPSK Impulse Signal Transmission for Ultra Wide Band Communication Systems in Multipath Channel Environments

    Chaiyaporn KHEMAPATAPAN  Watit BENJAPOLAKUL  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E88-A No:11
      Page(s):
    3100-3109

    In this paper, three new ultra wideband (UWB) communication systems with quadrature-phase shift keying (QPSK) impulse modulation are proposed. First, direct-sequence (DS) multiple-access scheme is applied. The second proposed system is based on time-hopping (TH) multiple-access scheme. The last proposed system applies TH multiple-access scheme with QPSK impulse modulation and pulse position modulation (PPM). The conventional UWB communications as TH scheme with PPM modulation and DS scheme with binary-phase shift keying (BPSK) are used to compare. The simulation results show that all proposed UWB communication systems can provide obviously better performances compared with the conventional TH-PPM and DS-BPSK UWB communication systems. The comparisons in aspects of transmission bit rate and the number of users are also investigated.

  • Multiple Access Systems with QPSK Modulation

    Ha H. NGUYEN  Huy G. VU  David E. DODDS  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E87-A No:7
      Page(s):
    1833-1835

    This letter considers multiple access systems without bandwidth expansion. To improve the spectral efficiency, each user employs a QPSK modulation. The orientation of QPSK constellations is designed to maximize the minimum distance of the superimposed symbol constellation. The upper and lower bounds for the error performance of the proposed design demonstrate its advantage.

  • Generation of 60 GHz Dual-Mode Optical BPSK Signal Pair for Crosstalk-Free QPSK Photodetection by Optical Modulation Scheme with Double RF Inputs and Suppressed Carrier Feature

    Shinji NAKADAI  Kaoru HIGUMA  Satoshi OIKAWA  Masato KISHI  Masahiro TSUCHIYA  

     
    PAPER-Signal Generation and Processing Based on MWP Techniques

      Vol:
    E86-C No:7
      Page(s):
    1245-1250

    A novel optical modulation scheme is proposed for synthesizing a pair of dual-mode optical BPSK signals with an orthogonal phase relationship via a LiNbO3 Mach-Zehnder modulator (MZM) with dual RF signal inputs and a carrier suppression feature, which enables the generation of a crosstalk-free QPSK signal at the photodetection stage. With this method, one can compensate the drawback, that is bandwidth broadening, in our previously proposed method where a dual-mode optical QPSK signal is generated on the basis of narrow-angle modulated QPSK signal injection into a double-sideband suppressed carrier MZM device. We have carried out experiments for 60 GHz performance demonstration of this QPSK signal generation mechanism, and the results indicate the effectiveness of the present scheme.

  • Development of Narrow-Band Digital Land Mobile Radio

    Eimatsu MORIYAMA  Yukiyoshi KAMIO  Kiyoshi HAMAGUCHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E83-B No:5
      Page(s):
    1094-1105

    A narrow-band digital land mobile system has been developed that operates in the frequency bands of 150 and 400 MHz, which are commonly used by transportation-related companies, local government, and public-sector organizations--and are therefore very congested. The number of users that can be accommodated in these bands is almost doubled by reducing the channel separation to 6.25 kHz, about half that of a conventional FM system. A carrier bit rate of 9.6 kbps is achieved by using π/4 shift QPSK modulation with a roll-off factor of 0.2. Laboratory and field testing showed that: (1) Without propagation delay spread, a BER of 10-2 was obtained without using space diversity. (2) With a propagation delay spread of 10 µs, a BER of 610-3 was obtained without space diversity. These measurements confirmed the technical feasibility of this narrow-band system. Its widespread implementation will help mitigate the congestion in private radio systems.