The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] QoS provision(4hit)

1-4hit
  • Energy-Aware Error Correction for QoS-Provisioning Real-Time Communications in Wireless Networks

    Kyong Hoon KIM  Wan Yeon LEE  Jong KIM  

     
    LETTER

      Vol:
    E91-A No:7
      Page(s):
    1682-1685

    A key issue in QoS-provisioning real-time wireless communications is to provide the QoS requirement with low energy consumption. In this paper, we propose an energy-efficient error correction scheme for real-time communications with QoS requirements in wireless networks. The QoS requirement of a message stream is modeled with (m, k) constraint, implying that at least m messages should be sent to a receiver during any window of k periods. The proposed scheme adaptively selects an error correcting code in an energy-efficient manner so that it maximizes the number of QoS provisionings per unit energy consumption.

  • Dynamic Hop Service Differentiation Model for End-to-End QoS Provisioning in Multi-Hop Wireless Networks

    Joo-Sang YOUN  Seung-Joon SEOK  Chul-Hee KANG  

     
    PAPER-QoS Control Mechanism and System

      Vol:
    E91-B No:5
      Page(s):
    1349-1359

    This paper presents a new QoS model for end-to-end service provisioning in multi-hop wireless networks. In legacy IEEE 802.11e based multi-hop wireless networks, the fixed assignment of service classes according to flow's priority at every node causes priority inversion problem when performing end-to-end service differentiation. Thus, this paper proposes a new QoS provisioning model called Dynamic Hop Service Differentiation (DHSD) to alleviate the problem and support effective service differentiation between end-to-end nodes. Many previous works for QoS model through the 802.11e based service differentiation focus on packet scheduling on several service queues with different service rate and service priority. Our model, however, concentrates on a dynamic class selection scheme, called Per Hop Class Assignment (PHCA), in the node's MAC layer, which selects a proper service class for each packet, in accordance with queue states and service requirement, in every node along the end-to-end route of the packet. The proposed QoS solution is evaluated using the OPNET simulator. The simulation results show that the proposed model outperforms both best-effort and 802.11e based strict priority service models in mobile ad hoc environments.

  • QoS-Guaranteed Wavelength Allocation for WDM Networks with Limited-Range Wavelength Conversion

    Takuji TACHIBANA  Shoji KASAHARA  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E87-B No:6
      Page(s):
    1439-1450

    In this paper, we consider QoS-guaranteed wavelength allocation for WDM networks with limited-range wavelength conversion. In the wavelength allocation, the pre-determined number of wavelengths are allocated to each QoS class depending on the required loss probability. Moreover, we consider two wavelength selection rules and three combinations of the rules. We analyze the connection loss probability of each QoS class for a single link using continuous-time Markov chain. We also investigate the connection loss probability for a uni-directional ring network by simulation. In numerical examples, we compare connection loss probabilities for three combinations of selection rules and show how each combination of selection rules affects the connection loss probability of each QoS class. Furthermore, we show how wavelength conversion capability affects the connection loss probability. It is shown that the proposed allocation with appropriate wavelength selection rule is effective for QoS provisioning when the number of wavelengths is large. We also show the effective combination of wavelength selection rules for the case with small wavelength conversion capability.

  • QoS Provisioning Architecture for Next Generation Mobile Networks

    Osvaldo A. GONZALEZ  Michael NEEDHAM  

     
    PAPER-Mobility Management

      Vol:
    E87-B No:5
      Page(s):
    1211-1218

    Service differentiation has been a subject of research for the past few years in the IETF; and in the current Internet, IP flows are mostly treated in a best-effort approach. However, for next generation networks it is expected that users would like to obtain service differentiation based on their preferences or profiles as well as the different types of multimedia they opt to receive or send. In addition, current Quality of Service (QoS) provisioning architectures have been designed mostly for the fixed networks without taking into consideration the wireless or radio links special requirements, such as low bandwidth availability, error prone communications, etc. In this paper we propose a QoS provisioning architecture for next generation networks that uses a hybrid approach to deal with both the wireless and wired (fixed) part of the network. For administering the scarce resource of the radio environment, we have developed a resource allocation algorithm based on micro-economic principles that uses associated piecewise linear utility functions which describe the benefit a user receives from the allocation of various amounts of resource. For the wired part of the network we have also developed a Core-Stateless Utility based Rate allocation Framework (SURF) for performing traffic policing where the flow's requirements are expressed using utility functions. The core routers maintain no per-flow state and implement a simple packet level admission control algorithm that is based on a threshold utility value that is computed dynamically. To tie in these two mechanisms, we developed a signaling mechanism that collect network statistics when a user starts a call and a QoS administrator entity (or Broker) perform the computations for allocating resources based on the information of available resources in the fixed and the wireless sections of the network. A comparison between the hybrid approach and the SURF approach to show the performance of the proposed architecture is presented later in the paper.