The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SIMO model(3hit)

1-3hit
  • Blind Separation and Deconvolution for Convolutive Mixture of Speech Combining SIMO-Model-Based ICA and Multichannel Inverse Filtering

    Hiroshi SARUWATARI  Hiroaki YAMAJO  Tomoya TAKATANI  Tsuyoki NISHIKAWA  Kiyohiro SHIKANO  

     
    PAPER-Engineering Acoustics

      Vol:
    E88-A No:9
      Page(s):
    2387-2400

    We propose a new two-stage blind separation and deconvolution strategy for multiple-input multiple-output (MIMO)-FIR systems driven by colored sound sources, in which single-input multiple-output (SIMO)-model-based ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources as they are at the microphones. After the separation by the SIMO-ICA, a blind deconvolution technique for the SIMO model can be applied even when each source signal is temporally correlated and the mixing system has a nonminimum phase property. The simulation results reveal that the proposed algorithm can successfully achieve separation and deconvolution of a convolutive mixture of speech, and outperforms a number of conventional ICA-based BSD methods.

  • Multistage SIMO-Model-Based Blind Source Separation Combining Frequency-Domain ICA and Time-Domain ICA

    Satoshi UKAI  Tomoya TAKATANI  Hiroshi SARUWATARI  Kiyohiro SHIKANO  Ryo MUKAI  Hiroshi SAWADA  

     
    PAPER

      Vol:
    E88-A No:3
      Page(s):
    642-650

    In this paper, single-input multiple-output (SIMO)-model-based blind source separation (BSS) is addressed, where unknown mixed source signals are detected at microphones, and can be separated, not into monaural source signals but into SIMO-model-based signals from independent sources as they are at the microphones. This technique is highly applicable to high-fidelity signal processing such as binaural signal processing. First, we provide an experimental comparison between two kinds of SIMO-model-based BSS methods, namely, conventional frequency-domain ICA with projection-back processing (FDICA-PB), and SIMO-ICA which was recently proposed by the authors. Secondly, we propose a new combination technique of the FDICA-PB and SIMO-ICA, which can achieve a higher separation performance than the two methods. The experimental results reveal that the accuracy of the separated SIMO signals in the simple SIMO-ICA is inferior to that of the signals obtained by FDICA-PB under low-quality initial value conditions, but the proposed combination technique can outperform both simple FDICA-PB and SIMO-ICA.

  • High-Fidelity Blind Separation of Acoustic Signals Using SIMO-Model-Based Independent Component Analysis

    Tomoya TAKATANI  Tsuyoki NISHIKAWA  Hiroshi SARUWATARI  Kiyohiro SHIKANO  

     
    PAPER-Engineering Acoustics

      Vol:
    E87-A No:8
      Page(s):
    2063-2072

    We newly propose a novel blind separation framework for Single-Input Multiple-Output (SIMO)-model-based acoustic signals using an extended ICA algorithm, SIMO-ICA. The SIMO-ICA consists of multiple ICAs and a fidelity controller, and each ICA runs in parallel under the fidelity control of the entire separation system. The SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources as they are at the microphones. Thus, the separated signals of SIMO-ICA can maintain the spatial qualities of each sound source. In order to evaluate its effectiveness, separation experiments are carried out under both nonreverberant and reverberant conditions. The experimental results reveal that the signal separation performance of the proposed SIMO-ICA is the same as that of the conventional ICA-based method, and that the spatial quality of the separated sound in SIMO-ICA is remarkably superior to that of the conventional method, particularly for the fidelity of the sound reproduction.