The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SIP-adus(1hit)

1-1hit
  • Current Status and Issues of Traffic Light Recognition Technology in Autonomous Driving System Open Access

    Naoki SUGANUMA  Keisuke YONEDA  

     
    INVITED PAPER

      Pubricized:
    2021/10/12
      Vol:
    E105-A No:5
      Page(s):
    763-769

    Autonomous driving technology is currently attracting a lot of attention as a technology that will play a role in the next generation of mobility. For autonomous driving in urban areas, it is necessary to recognize various information. Especially, the recognition of traffic lights is important in crossing intersections. In this paper, traffic light recognition technology developed by the authors was evaluated using onboard sensor data during autonomous driving in the Tokyo waterfront area as an example of traffic light recognition technology. Based on the results, it was found that traffic lights could be recognized with an accuracy of approximately 99% to carry out the decision making for intersection approaching. However, from the evaluation results, it was also confirmed that traffic light recognition became difficult under situations involving occlusion by other object, background assimilation, nighttime conditions, and backlight by sunlight. It was also confirmed that these effects are mostly temporary, and do not significantly affect decision-making to enter intersections as a result of utilizing information from multiple traffic lights installed at an intersection. On the other hand, it is expected that recognition with current onboard cameras will become technically difficult during situations in which not all traffic lights are visually recognizable due to the effects of back or front light by sunlight when stopped at the stop line of an intersection. This paper summarizes these results and presents the necessity of appropriate traffic light installation on the assumption of recognition by onboard cameras.