The classification time required by conventional multi-class SVMs greatly increases as the number of pattern classes increases. This is due to the fact that the needed set of binary class SVMs gets quite large. In this paper, we propose a method to reduce the number of classes by using nearest neighbor rule (NNR) in the principle component analysis and linear discriminant analysis (PCA+LDA) feature subspace. The proposed method reduces the number of face classes by selecting a few classes closest to the test data projected in the PCA+LDA feature subspace. Results of experiment show that our proposed method has a lower error rate than nearest neighbor classification (NNC) method. Though our error rate is comparable to the conventional multi-class SVMs, the classification process of our method is much faster.
Takeshi MASUYAMA Hiroshi NAKAGAWA
Although many researchers have verified the superiority of Support Vector Machine (SVM) on text categorization tasks, some recent papers have reported much lower performance of SVM based text categorization methods when focusing on all types of parts of speech (POS) as input words and treating large numbers of training documents. This was caused by the overfitting problem that SVM sometimes selected unsuitable support vectors for each category in the training set. To avoid the overfitting problem, we propose a two step text categorization method with a variable cascaded feature selection (VCFS) using SVM. VCFS method selects a pair of the best number of words and the best POS combination for each category at each step of the cascade. We made use of the difference of words with the highest mutual information for each category on each POS combination. Through the experiments, we confirmed the validation of VCFS method compared with other SVM based text categorization methods, since our results showed that the macro-averaged F1 measure (64.8%) of VCFS method was significantly better than any reported F1 measures, though the micro-averaged F1 measure (85.4%) of VCFS method was similar to them.