The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] T-S fuzzy system(3hit)

1-3hit
  • Current Sensorless Regulation for Converters via Integral Fuzzy Control

    Kuang-Yow LIAN  Hui-Wen TU  Chi-Wang HONG  

     
    PAPER-Electronic Circuits

      Vol:
    E90-C No:2
      Page(s):
    507-514

    In this paper, we propose an integral-type T-S fuzzy control scheme to deal with the regulation problem of buck converters without current sensors. This current sensorless control of converters provides the output voltage to achieve zero steady-state error and is with high robust performance. The stability of the overall closed-loop system is rigorously analyzed by using Lyapunov's method. Based on an appropriate assumption, the separation principle can still succeed in the control problems. Hence, the controller and observer gains can be separately obtained by solving LMIs via Matlab's toolbox. The observer-based controller is realized with Simulink and digital signal processors (DSPs). The simulation and experimental results verify the feasibility of the proposed schemes and show the satisfactory performance for the power converters.

  • Control Performance of Discrete-Time Fuzzy Systems Improved by Neural Networks

    Chien-Hsing SU  Cheng-Sea HUANG  Kuang-Yow LIAN  

     
    PAPER-Systems and Control

      Vol:
    E89-A No:5
      Page(s):
    1446-1453

    A new control scheme is proposed to improve the system performance for discrete-time fuzzy systems by tuning control grade functions using neural networks. According to a systematic method of constructing the exact Takagi-Sugeno (T-S) fuzzy model, the system uncertainty is considered to affect the membership functions. Then, the grade functions, resulting from the membership functions of the control rules, are tuned by a back-propagation network. On the other hand, the feedback gains of the control rules are determined by solving a set of LMIs which satisfy sufficient conditions of the closed-loop stability. As a result, both stability guarantee and better performance are concluded. The scheme applied to a truck-trailer system is verified by satisfactory simulation results.

  • The State Feedback Control Based on Fuzzy Observer for T-S Fuzzy Systems with Unknown Time-Delay

    Hyunseok SHIN  Euntai KIM  Mignon PARK  

     
    PAPER-Systems and Control

      Vol:
    E86-A No:9
      Page(s):
    2333-2339

    In this paper, we present an output feedback controller using a fuzzy controller and observer for nonlinear systems with unknown time-delay. Recently, Cao et al. proposed a stabilization method for the nonlinear time-delay systems using a fuzzy controller when the time-delay is known. In general, however, it is impossible to know or measure this time-varying delay. The proposed method requires only the upper bound of the derivative of the time-delay. We represent the nonlinear system with the unknown time-delay by Takagi-Sugeno (T-S) fuzzy model and design the fuzzy controller and observer for the systems using the parallel distributed compensation (PDC) scheme. In addition, we derive the sufficient condition for the asymptotic stability of the equilibrium point by applying Lyapunov-Krasovskii theorem to the closed-loop system and solve the condition in the formulation of LMI. Finally, computer simulations are included to demonstrate the effectiveness of the suggested method.