The search functionality is under construction.

Keyword Search Result

[Keyword] Toeplitz matrix(9hit)

1-9hit
  • Coherent Signal DOA Estimation Using Eigenvector Associated with Max Eigenvalue

    Rui LI  Ruqi XIAO  Hong GU  Weimin SU  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/01/07
      Vol:
    E104-A No:7
      Page(s):
    962-967

    A novel direction of arrival (DOA) estimation method for the coherent signal is presented in this paper. The proposed method applies the eigenvector associated with max eigenvalue, which contains the DOAs of all signals, to form a Toeplitz matrix, yielding an unconstrained optimization problem. Then, the DOA is obtained by peak searching of the pseudo power spectrum without the knowledge of signal number. It is illustrated that the method has a great performance and low computation complexity for the coherent signal. Simulation results verify the usefulness of the method.

  • Sparse Random Block-Banded Toeplitz Matrix for Compressive Sensing

    Xiao XUE  Song XIAO  Hongping GAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/02/18
      Vol:
    E102-B No:8
      Page(s):
    1565-1578

    In compressive sensing theory (CS), the restricted isometry property (RIP) is commonly used for the measurement matrix to guarantee the reliable recovery of sparse signals from linear measurements. Although many works have indicated that random matrices with excellent recovery performance satisfy the RIP with high probability, Toeplitz-structured matrices arise naturally in real scenarios, such as applications of linear time-invariant systems. Thus, the corresponding measurement matrix can be modeled as a Toeplitz (partial) structured matrix instead of a completely random matrix. The structure characteristics introduce coherence and cause the performance degradation of the measurement matrix. To enhance the recovery performance of the Toeplitz structured measurement matrix in multichannel convolution source separation, an efficient construction of measurement matrix is presented, referred to as sparse random block-banded Toeplitz matrix (SRBT). The sparse signal is pre-randomized by locally scrambling its sample locations. Then, the signal is subsampled using the sparse random banded matrix. Finally, the mixing measurements are obtained. Based on the analysis of eigenvalues, the theoretical results indicate that the SRBT matrix satisfies the RIP with high probability. Simulation results show that the SRBT matrix almost matches the recovery performance of random matrices. Compared with the existing banded block Toeplitz matrix, SRBT significantly improves the probability of successful recovery. Additionally, SRBT has the advantages of low storage requirements and fast computation in reconstruction.

  • Efficient Three-Way Split Formulas for Binary Polynomial Multiplication and Toeplitz Matrix Vector Product

    Sun-Mi PARK  Ku-Young CHANG  Dowon HONG  Changho SEO  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E101-A No:1
      Page(s):
    239-248

    In this paper, we present a new three-way split formula for binary polynomial multiplication (PM) with five recursive multiplications. The scheme is based on a recently proposed multievaluation and interpolation approach using field extension. The proposed PM formula achieves the smallest space complexity. Moreover, it has about 40% reduced time complexity compared to best known results. In addition, using developed techniques for PM formulas, we propose a three-way split formula for Toeplitz matrix vector product with five recursive products which has a considerably improved complexity compared to previous known one.

  • Efficient Multiplication Based on Dickson Bases over Any Finite Fields

    Sun-Mi PARK  Ku-Young CHANG  Dowon HONG  Changho SEO  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E99-A No:11
      Page(s):
    2060-2074

    We propose subquadratic space complexity multipliers for any finite field $mathbb{F}_{q^n}$ over the base field $mathbb{F}_q$ using the Dickson basis, where q is a prime power. It is shown that a field multiplication in $mathbb{F}_{q^n}$ based on the Dickson basis results in computations of Toeplitz matrix vector products (TMVPs). Therefore, an efficient computation of a TMVP yields an efficient multiplier. In order to derive efficient $mathbb{F}_{q^n}$ multipliers, we develop computational schemes for a TMVP over $mathbb{F}_{q}$. As a result, the $mathbb{F}_{2^n}$ multipliers, as special cases of the proposed $mathbb{F}_{q^n}$ multipliers, have lower time complexities as well as space complexities compared with existing results. For example, in the case that n is a power of 3, the proposed $mathbb{F}_{2^n}$ multiplier for an irreducible Dickson trinomial has about 14% reduced space complexity and lower time complexity compared with the best known results.

  • Low Complexity Multiplier Based on Dickson Basis Using Efficient Toeplitz Matrix-Vector Product

    Sun-Mi PARK  Ku-Young CHANG  Dowon HONG  Changho SEO  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E98-A No:11
      Page(s):
    2283-2290

    A field multiplication in the extended binary field is often expressed using Toeplitz matrix-vector products (TMVPs), whose matrices have special properties such as symmetric or triangular. We show that such TMVPs can be efficiently implemented by taking advantage of some properties of matrices. This yields an efficient multiplier when a field multiplication involves such TMVPs. For example, we propose an efficient multiplier based on the Dickson basis which requires the reduced number of XOR gates by an average of 34% compared with previously known results.

  • Generalization to Any Field of Toeplitz Matrix Vector Product Based on Multi-Way Splitting Method and Its Application

    Sun-Mi PARK  Ku-Young CHANG  Dowon HONG  Changho SEO  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E98-A No:1
      Page(s):
    378-383

    In several important applications, we often encounter with the computation of a Toeplitz matrix vector product (TMVP). In this work, we propose a k-way splitting method for a TMVP over any field F, which is a generalization of that over GF(2) presented by Hasan and Negre. Furthermore, as an application of the TMVP method over F, we present the first subquadratic space complexity multiplier over any finite field GF(pn) defined by an irreducible trinomial.

  • Scalable and Systolic Montgomery Multipliers over GF(2m)

    Chin-Chin CHEN  Chiou-Yng LEE  Erl-Huei LU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:7
      Page(s):
    1763-1771

    This work presents a novel scalable and systolic Montgomery's algorithm in GF(2m). The proposed algorithm is based on the Toeplitz matrix-vector representation, which obtains the scalable and systolic Montgomery multiplier in a flexible manner, and can adapt to the required precision. Analytical results indicate that the proposed multiplier over the generic field of GF(2m) has a latency of d+n(2n+1), where n = m / d , and d denotes the selected digital size. The latency is reduced to d+n(n+1) clock cycles when the field is constructed from generalized equally-spaced polynomials. Since the selected digital size is d ≥5 bits, the proposed architectures have lower time-space complexity than traditional digit-serial multipliers. Moreover, the proposed architectures have regularity, modularity and local interconnect ability, making them very suitable for VLSI implementation.

  • Low-Complexity Parallel Systolic Montgomery Multipliers over GF(2m) Using Toeplitz Matrix-Vector Representation

    Chiou-Yng LEE  

     
    PAPER-Circuit Theory

      Vol:
    E91-A No:6
      Page(s):
    1470-1477

    In this paper, a generalized Montgomery multiplication algorithm in GF(2m) using the Toeplitz matrix-vector representation is presented. The hardware architectures derived from this algorithm provide low-complexity bit-parallel systolic multipliers with trinomials and pentanomials. The results reveal that our proposed multipliers reduce the space complexity of approximately 15% compared with an existing systolic Montgomery multiplier for trinomials. Moreover, the proposed architectures have the features of regularity, modularity, and local interconnection. Accordingly, they are well suited to VLSI implementation.

  • Fast Algorithms for Solving Toeplitz and Bordered Toeplitz Matrix Equations Arising in Electromagnetic Theory

    Min-Hua HO  Mingchih CHEN  

     
    PAPER-Electromagnetic Theory

      Vol:
    E88-C No:6
      Page(s):
    1295-1303

    In many electromagnetic field problems, matrix equations were always deduced from using the method of moment. Among these matrix equations, some of them might require a large amount of computer memory storage which made them unrealistic to be solved on a personal computer. Virtually, these matrices might be too large to be solved efficiently. A fast algorithm based on a Toeplitz matrix solution was developed for solving a bordered Toeplitz matrix equation arising in electromagnetic problems applications. The developed matrix solution method can be applied to solve some electromagnetic problems having very large-scale matrices, which are deduced from the moment method procedure. In this paper, a study of a computationally efficient order-recursive algorithm for solving the linear electromagnetic problems [Z]I = V, where [Z] is a Toeplitz matrix, was presented. Upon the described Toeplitz matrix algorithm, this paper derives an efficient recursive algorithm for solving a bordered Toeplitz matrix with the matrix's major portion in the form of a Toeplitz matrix. This algorithm has remarkable advantages in reducing both the number of arithmetic operations and memory storage.