The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] UWB-WPAN(2hit)

1-2hit
  • Density-Aware Scheduling Based on the Exclusive Region in UWB-WPAN Systems

    Byung Wook KIM  Sung-Yoon JUNG  Dong-Jo PARK  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:6
      Page(s):
    2074-2079

    Ultra-wideband (UWB) technology is an excellent candidate for supporting wireless personal area networks (WPANs) because of its wide bandwidth, low transmission power, low complexity and multipath immunity. We study density-aware exclusive region (ER)-based scheduling for a nonuniform UWB-WPAN. Using a generalized radius for the ER based on statistical topology, we propose a scheduling scheme that uses a radius for the ER that varies according to the density information around the destination in the nonuniform network. Computer simulations show that (i) our approach to the radius of the generalized ER provides better scheduling performance than the radius solution of the conventional work [3] and (ii) scheduling that is based on an adaptive ER radius can always outperform both the fixed ER-based scheme and the TDMA scheme with respect to network throughput.

  • Interference Reduction Using a Novel Pulse Set for UWB-CDMA Systems

    Hiroki HARADA  Ryuji KOHNO  

     
    PAPER

      Vol:
    E89-A No:11
      Page(s):
    3050-3058

    A novel UWB system for a new indoor short distance radio-communication is examined. Various types of UWB systems have been proposed in the literature. Particularly direct sequence (DS) systems and time hopping (TH) systems are attractive due to low power consumption and a simple transceiver construction. In this paper, we consider to apply modulated and modified Hermite pulses (MMHP) for both DS-UWB and TH-UWB systems. Furthermore, MMHP are extended to a novel pulse set referred as limited bandwidth MMHP set in order to reduce various interferences. It is composed of pseudo-orthogonal pulses that have both good auto-correlation characteristics in all orders and low cross-correlation characteristics between different orders. The proposed pulse set also have some specific notches, which can be used to reduce narrow-band interference (NBI). Additionally, we propose a novel pulse shape hopping that employs the proposed MMHP set. Multi-user interference (MUI) and inter-symbol interference (ISI) can be reduced by such a pulse shape hopping scheme for the DS or TH UWB signal format. Simulation results show significant performance improvements by using the proposed UWB system.