The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] YSZ buffer layer(1hit)

1-1hit
  • Preparation and Characterization of Nanoparticulate CoFe2O4 Thin Films by the Sol-Gel Method

    Hyuk LIM  Young-Jei OH  Se-Young CHOI  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1483-1488

    Co-ferrite thin films have been fabricated on Corning glass substrates by a chelating sol-gel process. Structural and magnetic properties of the films have been studied as a function of annealing temperature using an X-ray diffraction (XRD) and a vibrating sample magnetometer. XRD results revealed that most of the Co-ferrite grains were randomly oriented. Rapid annealing (RA) and standard annealing (SA) processes were used for the variation of heat treatment and the characteristic comparison. Coercivity was changed with the thermal condition and the magnetization increased with the soaking time. With prolonged soaking time, however, the coercivity decreased due to the diffusion of cations from the glass substrate. RA in the preparation of Co-ferrite thin films was effective for preventing interdiffusion at interfaces and for forming a single phase in the case of reduced soaking time. A yttria stabilized zirconia (YSZ) buffer layer between the Co-ferrite layer and the substrate was effective for improving the magnetic properties of the films at higher temperatures. It was observed that Co-ferrite thin films were composed of grains typically 35 nm in size and their rms roughness was approximately 1.3 nm. The saturation magnetization of the thin films by subjected to rapid annealing at 900C for 150 seconds was 400 emu/cm3 and the coercivity of the films was approximately 3000 Oe.