The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] acoustic fields(2hit)

1-2hit
  • Wide-Area Sound-Control System for Reducing Reverberation Using Power Envelope Inverse Filtering

    Ryohei NAKADA  Yutaka HASEGAWA  Shigeki HIROBAYASHI  Toshio YOSHIZAWA  Tadanobu MISAWA  Junya SUZUKI  

     
    PAPER-Engineering Acoustics

      Vol:
    E96-A No:7
      Page(s):
    1509-1517

    We propose a sound field control system to control the sound over a wide area within a room by reducing the influence of the reproduction space using power envelope inverse filtering (PEIF). Envelopes of the impulse response within the room have approximately the same shape at all observation points. Therefore, the proposed sound field control system can control with a small number of loudspeakers a wider area by reducing reverberation in the room through envelope processing. We present experimental data demonstrating that the proposed PEIF system can provide better control than a system that uses minimum phase inverse filtering (MPIF), which is conventionally used for reducing reverberation. Improvement was observed across the frequency band, especially above 1 kHz. Additionally, our PEIF system is more effective over the high-frequency range.

  • Acoustic Field Analysis of Surface Acoustic Wave Dispersive Delay Lines Using Inclined Chirp IDT

    Koichiro MISU  Koji IBATA  Shusou WADAKA  Takao CHIBA  Minoru K. KUROSAWA  

     
    PAPER-Ultrasonics

      Vol:
    E90-A No:5
      Page(s):
    1014-1020

    Acoustic field analysis results of surface acoustic wave dispersive delay lines using inclined chirp IDTs on a Y-Z LiNbO3 substrate are described. The calculated results are compared with optical measurements. The angular spectrum of the plane wave method is applied to calculation of the acoustic fields considering the anisotropy of the SAW velocity by using the polynomial approximation. Acoustic field propagating along the Z-axis of the substrate, which is the main beam excited by the inclined chirp IDT, shows asymmetric distribution between the +Z and -Z directions. Furthermore the SAW beam propagating in a slanted direction with an angle of +18 from the Z axis to the X-axis is observed. It is described that the SAW beam propagating in a slanted direction is the first side lobe excited by the inclined chirp IDT. The acoustic field shows asymmetric distribution along the X-axis because of the asymmetric structure of the inclined chirp IDT. Finally, acoustic field of a two-IDT connected structure which consists of the same IDTs electrically connected in series is presented. The acoustic field of the two-IDT connected structure is calculated to be superposed onto the calculated result of the acoustic field exited by one IDT on the calculated result shifted along the X-axis. Two SAW beams excited by IDTs are observed. The distributions of the SAW beams are not in parallel. The calculated results show good agreement with the optical measurement results.