The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] adaptive interference canceller(4hit)

1-4hit
  • Joint AIC and ML Decoder Scheme for a Space-Time Coded DS-CDMA System

    JooHyun YI  Jae Hong LEE  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:8
      Page(s):
    2512-2516

    In this paper, a joint adaptive interference canceller (AIC) and maximum likelihood (ML) decoder scheme is proposed for a space-time coded DS-CDMA system with the difference between arrival times from transmit antennas. As the arrival time difference causes not only ISI and MAI, but also inter-antenna interference, performance degradation in the space-time coded DS-CDMA system is more severe than that of a regular DS-CDMA system with single transmit antenna. To mitigate the effect of the interference during space-time decoding, a joint algorithm for the proposed scheme merges adaptation process of the AIC into a ML decoding algorithm. Performance of the proposed scheme is evaluated for QPSK space-time trellis codes with two transmit antennas. It is shown that the proposed scheme achieves better performance than the conventional ML decoding scheme.

  • Performance Evaluation of CDMA Adaptive Interference Canceller with RAKE Structure Using Developed Testbed in Multiuser and Multipath Fading Environment

    Hironori MIZUGUCHI  Shousei YOSHIDA  Akihisa USHIROKAWA  

     
    PAPER

      Vol:
    E81-A No:11
      Page(s):
    2311-2318

    In this paper, we describe the implementation of the proposed single user type CDMA adaptive interference canceller (AIC) with RAKE structure in the developed testbed for the base station, and evaluate its performance in the multiuser and multipath fading environment. Laboratory experiment demonstrates that the AIC receiver is much more near-far resistant than the conventional matched filter (MF) receiver in the multiuser case. When the power of the other users is 6 dB larger than that of the desired user, the AIC receiver can achieve the BER of 10-3 at C/PG = 33. 3 % in the 2-path fading channel, while the MF receiver cannot achieve the BER at C/PG of more than 20. 8%. Furthermore, we evaluate the effect of transmission power reduction in the transmitter with transmission power control (TPC). The experimental result shows that the required transmission power can be greatly reduced by 3. 0 dB and 9. 2 dB with the AIC receiver at C/PG = 29. 2 % and 33. 3%, respectively.

  • CDMA-AIC: Highly Spectrum-Efficient CDMA Cellular System Based on Adaptive Interference Cancellation

    Shousei YOSHIDA  Akihisa USHIROKAWA  

     
    PAPER-Modulation, Demodulation

      Vol:
    E79-B No:3
      Page(s):
    353-360

    This paper describes a CDMA cellular system based on adaptive interference cancellation (CDMA-AIC) with a large capacity. In the CDMA-AIC, each base station employs a single-user type adaptive interference canceller (AIC), which consists of a fractionally chip-spaced code-orthogonalizing filter (COF) and a coherent detector. The AIC adaptively removes power-dominant multiple-access interferences (MAIs) in the cellular system, regardless of whether they are intra-cell interferences or inter-cell interferences, without any information about them, such as spreading codes, signal received timings and channel parameters. Evaluation under the multiple-cell environment demonstrates that the reverse link capacity of the CDMA-AIC with QPSK modulation is 3.6 times as large as the capacity of the CDMA without MAI cancellation. Further, the capacity is less sensitive to transmission power control errors than that of the conventional CDMA systems.

  • Coherent Hybrid DS-FFH CDMA with Adaptive Interference Cancelling for Cellular Mobile Communications

    Shigeru TOMISATO  Kazuhiko FUKAWA  Hiroshi SUZUKI  

     
    PAPER

      Vol:
    E77-B No:5
      Page(s):
    589-597

    This paper proposes Coherent-HYBrid Direct-Sequence Fast-Frequency-Hopping (CHYB-DS-FFH) CDMA with Adaptive Interference Cancelling (AIC) for cellular mobile communications. The features of CHYB-DS-FFH are symbol-by-symbol frequency diversity and low chip-rate DS multiplexing both of which are based on a coherent FFH modulation and demodulation scheme. The combination of coherent FFH, space diversity, and AIC is very effective for reducing the performance degradation due to interference. Computer simulations demonstrate BER performance of a 2 hop 500-kHz-interval frequency hopping system using () a linear canceller or () a nonlinear canceller. Both systems employ the two branch space diversity reception of 10kb/s QPSK with FFH over a 1MHz system bandwidth. In quasi-static channels, the average BER performance is 10-2 with average Eb/N0 less than 8dB. In dynamic fading channels under full interference conditions, CHYB-DS-FFH with the linear adaptive interference canceller realizes a BER of 10-2 at the average Eb/N0 of 15dB with maximum Doppler frequency fD of 5Hz, whereas CHYB-DS-FFH with the non-linear adaptive interference canceller achieves the same BER at the average Eb/N0 of 15dB with fD, equal to 30Hz.