The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] adaptive neighbors(1hit)

1-1hit
  • Entropy Regularized Unsupervised Clustering Based on Maximum Correntropy Criterion and Adaptive Neighbors

    Xinyu LI  Hui FAN  Jinglei LIU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/10/06
      Vol:
    E106-D No:1
      Page(s):
    82-85

    Constructing accurate similarity graph is an important process in graph-based clustering. However, traditional methods have three drawbacks, such as the inaccuracy of the similarity graph, the vulnerability to noise and outliers, and the need for additional discretization process. In order to eliminate these limitations, an entropy regularized unsupervised clustering based on maximum correntropy criterion and adaptive neighbors (ERMCC) is proposed. 1) Combining information entropy and adaptive neighbors to solve the trivial similarity distributions. And we introduce l0-norm and spectral embedding to construct similarity graph with sparsity and strong segmentation ability. 2) Reducing the negative impact of non-Gaussian noise by reconstructing the error using correntropy. 3) The prediction label vector is directly obtained by calculating the sparse strongly connected components of the similarity graph Z, which avoids additional discretization process. Experiments are conducted on six typical datasets and the results showed the effectiveness of the method.