The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] adhesion(6hit)

1-6hit
  • Preliminary Study of Electrical Contact Behaviors of Au-plated Material at Super Low Making/Breaking Velocity

    Wanbin REN  Shengjun XUE  Hongxu ZHI  Guofu ZHAI  

     
    PAPER-Electromechanical Devices and Components

      Vol:
    E98-C No:4
      Page(s):
    364-370

    This paper presents the electrical contact behaviors of Au-plated material at super low making and breaking velocity conditions by introducing our new designed test rig. The fundamental phenomena in the contact voltage and contact force versus piezoactuator displacement curves were investigated under the load current of 1A and velocity of 50,nm/s. From the repetitive experimental results, we found that the adhesion phenomena during the unloading process are closely correlative with the initial contact stage in the loading process. Furthermore, a mathematical model which is relative to the variation of contact force in loading is built, thus the physical mechanism of adhesion and principal factors of gold-plated materials are discussed. Finally, the physical process of molten bridge under the no mechanical contact situation is also analyzed in detail.

  • Improvement of Adhesion Strength of Fluoropolymer Thin Films by Vapor Deposition Polymerization

    Kazuo SENDA  Tsuyoshi MATSUDA  Kuniaki TANAKA  Hiroaki USUI  

     
    BRIEF PAPER

      Vol:
    E96-C No:3
      Page(s):
    374-377

    Fluoropolymer thin films were prepared by the ion-assisted vapor deposition polymerization (IAD) of 2-(perfluorohexyl)ethylacrylate (Rf-6). The adhesion strength of the film to substrates was estimated by sonicating the films in water and by immersing the films into dichloro-pentafluoro propane (HCFC225). The Rf-6 polymer films by IAD showed stronger adhesion to glass compared to a spin-coated Teflon AF film. The adhesion strength was improved with increasing ion energy Eion of IAD. The IAD films showed superior adhesion to PET surface compared to the glass substrate. The Rf-6 polymer film was effective as a single-layer antireflective coating. The refractive index of the film was 1.368 (λ = 546 nm), which increased slightly with increasing Eion. IAD can be a promising method to prepare fluoropolymer thin films due to the solvent-less process and the flexibility in controlling the film characteristics by the ion energy.

  • Growth of Endothelial Cells on Surfaces Modified by a Plasma-Polymerized Coating

    Hitoshi MUGURUMA  Naoya MURATA  Naoto KAWASAKI  Shogo KURETOKO  Susumu KUDO  

     
    LETTER-Organic Molecular Electronics

      Vol:
    E90-C No:9
      Page(s):
    1844-1847

    Endothelial cell adhesion and growth were investigated on three types of surfaces with a plasma-polymerized coating (PPC): (1) the pristine surface of a hexamethyldisiloxane (HMDS) PPC (hydrophobic, electrically neutral surface); (2) an HMDS PPC surface with nitrogen-containing plasma treatment (hydrophilic, positively charged surface); and (3) an HMDS PPC surface treated with oxygen plasma (hydrophilic, negatively charged surface). Endothelial cells grew on surface (2) but not on surfaces (1) or (3). Next, endothelial cell adhesion and growth was investigated on a surface on which 80-µm squares were micro-patterned at 160-µm intervals in a mosaic composed of two different (cell-adhesive and non-cell-adhesive) regions. Cell growth on the patterned surfaces was different from that on non-patterned surfaces. PPC was shown to be a simple process for modulating cell adhesion to surfaces.

  • Contact Behaviors of New Material for Micro Relays

    Terutaka TAMAI  Tatsumi IDE  

     
    PAPER-New Technology and Automotive Applications

      Vol:
    E87-C No:8
      Page(s):
    1235-1240

    Ag(40 wt%)-Pd(60 wt%) alloy has been widely applied to contact materials installed in various electromechanical devices. However, in application to the down sized relays, failure due to contact resistance is caused easily by both growth of oxide film on the contact surface and low contact force. To solve the increase in contact resistance, an overlay of thin Au or thin Au-Ag (8-10 wt%) has been used on the alloy. Despite this, cleanliness and low hardness of these overlays cause adhesion, or sticking, at contact interface. Increase in contact resistance and sticking are contrary to each other. In order to eliminate these contrary properties, the author studied improving the Ag-Pd alloy with a dopant. Low level of contact resistance for both static and dynamic contacts of Ag-Pd with Mg doping was found even if the contact surface was covered with an oxide contaminant film. This paper presents the excellent contact resistance and adhesion behaviors of Ag-Pd-Mg alloy and their mechanisms, and also presents in the later part, surface contamination behaviors for organic gases.

  • Wear Durability and Adhesion Evaluation Methods for Ultrathin Overcoat Films by Atomic Force Microscopy

    Shigeru UMEMURA  Shigeru HIRONO  Yasuko ANDOH  Reizo KANEKO  

     
    PAPER

      Vol:
    E81-C No:3
      Page(s):
    337-342

    A method has been developed for evaluating the wear durability and adhesion characteristics of ultrathin overcoat films. The relationship between the wear depth and applied load or between the wear depth and number of scanning-scratch cycles is used in AFM nanowear tests. Inherent wear durability, which is independent of adhesion or substrate hardness, can be evaluated from the relationship between wear depth and applied load at relatively low loads, and the adhesion characteristics can be evaluated from the relationship at relatively high loads. Wear durability can be evaluated with a small number of scanning-scratch cycles and adhesion with a large number of cycles.

  • Stiffness of Measurement System and Significant Figures of Displacement which are Required to Interpret Adhesional Force Curves

    Kunio TAKAHASHI  Nancy A. BURNHAM  Hubert M. POLLOCK  Tadao ONZAWA  

     
    PAPER-Actuator

      Vol:
    E80-C No:2
      Page(s):
    255-262

    Force curves obtained from an elastic contact theory are shown and compared with experimental results. In the elastic contact theory, a pin-on-disk contact is assumed and the following interaction are taken into consideration; (i) elastic deformation, (ii) the specific energy of adhesion in the area of the contact, which is expressed as the difference between the surface energies and the interface energy, (iii) the long-range interaction outside the area of contact, assuming the additivity of the Lennard-Jones type potential, and (iv) another elastic term for the measurement system such as the cantilever stiffness of an atomic force microscope (AFM). In the limit when the stiffness is infinite, the theory conforms to Muller-Yushchenko-Derjaguin (MYD) theory. In the limit when the surface-surface interaction is negligible, the theory conforms to the analytical theory by Takahashi-Mizuno-Onzawa. In the limit when the stiffness is infinite and the long-range interaction outside the area of contact is negligible, the theory conforms to Johnson-Kendall-Roberts (JKR) theory. All parameters and all equations are normalized and the normalized force curve is obtained as the functional of only two parameters; (1) the normalized stiffness of the measurement system, and (2) the normalized distance which is used in the expression of the Lennard-Jones potential. The force-displacement plots are converted into force-penetration plots.