The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] area spectral efficiency(2hit)

1-2hit
  • Spectral Efficiency of Fundamental Cooperative Relaying in Interference-Limited Environments

    Koji YAMAMOTO  Hirofumi MARUYAMA  Takashi SHIMIZU  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E91-B No:8
      Page(s):
    2674-2682

    The spectral efficiency of cooperative relaying in interference-limited environments in which a given channel is spatially reused is investigated. Cooperative relaying is a promising technique that uses neighboring stations to forward the data toward the destination in order to achieve spatial diversity gain. It has been reported that by introducing cooperative relaying into communication between an isolated source-destination pair, the error rate or spectral efficiency is generally improved. However, it is not intuitively clear whether cooperative relaying can improve the performance in interference-limited environments because the simultaneous transmission of multiple stations increases the number of interference signals. Assuming the most fundamental cooperative relaying arrangement, which consists of only one relay station, numerical results reveal that cooperative relaying is not always superior to non-cooperative single-hop and two-hop transmissions in terms of spectral efficiency.

  • Tradeoff between Area Spectral Efficiency and End-to-End Throughput in Rate-Adaptive Multihop Radio Networks

    Koji YAMAMOTO  Susumu YOSHIDA  

     
    PAPER

      Vol:
    E88-B No:9
      Page(s):
    3532-3540

    We investigate the impact of symbol rate control, modulation level control, and the number of hops on the area spectral efficiency of interference-limited multihop radio networks. By controlling symbol rate and modulation level, data rate can be adapted according to received power. In addition, varying the number of hops can control received power. First, we evaluate the achievable end-to-end throughput of multihop transmission assuming symbol rate and modulation level control. Numerical results reveal that by controlling symbol rate or using multihop transmission, the end-to-end communication range can be extended at the cost of end-to-end throughput, and this may result in lower area spectral efficiency. Next, an expression for the area spectral efficiency of multihop radio networks is derived as a function of the number of hops and the end-to-end throughput. Numerical results also reveal that the resulting area spectral efficiency depends on the specific circumstances, which, however, can be increased only by using multihop transmission.