The search functionality is under construction.

Keyword Search Result

[Keyword] artificial noise(3hit)

1-3hit
  • Energy-Efficient Secure Transmission for Cognitive Radio Networks with SWIPT

    Ke WANG  Wei HENG  Xiang LI  Jing WU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/03/03
      Vol:
    E103-B No:9
      Page(s):
    1002-1010

    In this paper, the artificial noise (AN)-aided multiple-input single-output (MISO) cognitive radio network with simultaneous wireless information and power transfer (SWIPT) is considered, in which the cognitive user adopts the power-splitting (PS) receiver architecture to simultaneously decode information and harvest energy. To support secure communication and facilitate energy harvesting, AN is transmitted with information signal at cognitive base station (CBS). The secrecy energy efficiency (SEE) maximization problem is formulated with the constraints of secrecy rate and harvested energy requirements as well as primary user's interference requirements. However, this challenging problem is non-convex due to the fractional objective function and the coupling between the optimization variables. For tackling the challenging problem, a double-layer iterative optimization algorithm is developed. Specifically, the outer layer invokes a one-dimension search algorithm for the newly introduced tight relaxation variable, while the inner one leverages the Dinkelbach method to make the fractional optimization problem more tractable. Furthermore, closed-form expressions for the power of information signal and AN are obtained. Numerical simulations are conducted to demonstrate the efficiency of our proposed algorithm and the advantages of AN in enhancing the SEE performance.

  • Energy Efficiency Optimization for Secure SWIPT System

    Chao MENG  Gang WANG  Bingjian YAN  Yongmei LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/10/29
      Vol:
    E103-B No:5
      Page(s):
    582-590

    This paper investigates the secrecy energy efficiency maximization (SEEM) problem in a simultaneous wireless information and power transfer (SWIPT) system, wherein a legitimate user (LU) exploits the power splitting (PS) scheme for simultaneous information decoding (ID) and energy harvesting (EH). To prevent interference from eavesdroppers on the LU, artificial noise (AN) is incorporated into the confidential signal at the transmitter. We maximize the secrecy energy efficiency (SEE) by joining the power of the confidential signal, the AN power, and the PS ratio, while taking into account the minimum secrecy rate requirement of the LU, the required minimum harvested energy, the allowed maximum radio frequency transmission power, and the PS ratio. The formulated SEEM problem involves nonconvex fractional programming and is generally intractable. Our solution is Lagrangian relaxation method than can transform the original problem into a two-layer optimization problem. The outer layer problem is a single variable optimization problem with a Lagrange multiplier, which can be solved easily. Meanwhile, the inner layer one is fractional programming, which can be transformed into a subtractive form solved using the Dinkelbach method. A closed-form solution is derived for the power of the confidential signal. Simulation results verify the efficiency of the proposed SEEM algorithm and prove that AN-aided design is an effective method for improving system SEE.

  • AN-Aided Transmission Design for Secure MIMO Cognitive Radio Network with SWIPT

    Xinyu DA  Lei NI  Hehao NIU  Hang HU  Shaohua YUE  Miao ZHANG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:8
      Page(s):
    946-952

    In this work, we investigate a joint transmit beamforming and artificial noise (AN) covariance matrix design in a multiple-input multiple-output (MIMO) cognitive radio (CR) downlink network with simultaneous wireless information and power transfer (SWIPT), where the malicious energy receivers (ERs) may decode the desired information and hence can be treated as potential eavesdroppers (Eves). In order to improve the secure performance of the transmission, AN is embedded to the information-bearing signal, which acts as interference to the Eves and provides energy to all receivers. Specifically, this joint design is studied under a practical non-linear energy harvesting (EH) model, our aim is to maximize the secrecy rate at the SR subject to the transmit power budget, EH constraints and quality of service (QoS) requirement. The original problem is not convex and challenging to be solved. To circumvent its intractability, an equivalent reformulation of this secrecy rate maximization (SRM) problem is introduced, wherein the resulting problem is primal decomposable and thus can be handled by alternately solving two convex subproblems. Finally, numerical results are presented to verify the effectiveness of our proposed scheme.