The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] attribute reduction(2hit)

1-2hit
  • Dynamic Ensemble Selection Based on Rough Set Reduction and Cluster Matching

    Ying-Chun CHEN  Ou LI  Yu SUN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/04/11
      Vol:
    E101-B No:10
      Page(s):
    2196-2202

    Ensemble learning is widely used in the field of sensor network monitoring and target identification. To improve the generalization ability and classification precision of ensemble learning, we first propose an approximate attribute reduction algorithm based on rough sets in this paper. The reduction algorithm uses mutual information to measure attribute importance and introduces a correction coefficient and an approximation parameter. Based on a random sampling strategy, we use the approximate attribute reduction algorithm to implement the multi-modal sample space perturbation. To further reduce the ensemble size and realize a dynamic subset of base classifiers that best matches the test sample, we define a similarity parameter between the test samples and training sample sets that takes the similarity and number of the training samples into consideration. We then propose a k-means clustering-based dynamic ensemble selection algorithm. Simulations show that the multi-modal perturbation method effectively selects important attributes and reduces the influence of noise on the classification results. The classification precision and runtime of experiments demonstrate the effectiveness of the proposed dynamic ensemble selection algorithm.

  • On the Properties and Applications of Inconsistent Neighborhood in Neighborhood Rough Set Models

    Shujiao LIAO  Qingxin ZHU  Rui LIANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/12/20
      Vol:
    E101-D No:3
      Page(s):
    709-718

    Rough set theory is an important branch of data mining and granular computing, among which neighborhood rough set is presented to deal with numerical data and hybrid data. In this paper, we propose a new concept called inconsistent neighborhood, which extracts inconsistent objects from a traditional neighborhood. Firstly, a series of interesting properties are obtained for inconsistent neighborhoods. Specially, some properties generate new solutions to compute the quantities in neighborhood rough set. Then, a fast forward attribute reduction algorithm is proposed by applying the obtained properties. Experiments undertaken on twelve UCI datasets show that the proposed algorithm can get the same attribute reduction results as the existing algorithms in neighborhood rough set domain, and it runs much faster than the existing ones. This validates that employing inconsistent neighborhoods is advantageous in the applications of neighborhood rough set. The study would provide a new insight into neighborhood rough set theory.