The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] beam split(2hit)

1-2hit
  • An Efficiency-Enhancing Wideband OFDM Dual-Function MIMO Radar-Communication System Design Open Access

    Yumeng ZHANG  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2024/03/04
      Vol:
    E107-A No:8
      Page(s):
    1421-1424

    Integrated Sensing and Communication at terahertz band (ISAC-THz) has been considered as one of the promising technologies for the future 6G. However, in the phase-shifters (PSs) based massive multiple-input-multiple-output (MIMO) hybrid precoding system, due to the ultra-large bandwidth of the terahertz frequency band, the subcarrier channels with different frequencies have different equivalent spatial directions. Therefore, the hybrid beamforming at the transmitter will cause serious beam split problems. In this letter, we propose a dual-function radar communication (DFRC) precoding method by considering recently proposed delay-phase precoding structure for THz massive MIMO. By adding delay phase components between the radio frequency chain and the frequency-independent PSs, the beam is aligned with the target physical direction over the entire bandwidth to reduce the loss caused by beam splitting effect. Furthermore, we employ a hardware structure by using true-time-delayers (TTDs) to realize the concept of frequency-dependent phase shifts. Theoretical analysis and simulation results have shown that it can increase communication performance and make up for the performance loss caused by the dual-function trade-off of communication radar to a certain extent.

  • A Variable Optical Beam Splitter Utilizing a Tapered Velocity Coupler

    Masahiro GESHIRO  Masashi HOTTA  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1731-1734

    A new type of variable beam splitter at optical frequencies is proposed. The basic structure of the device utilizes a tapered velocity coupler which is composed of a center slab waveguide of constant-thickness, constant-index type and two identical outer slab waveguides of constant-thickness, variable-index type. The coupler is assumed to be fabricated on a LiNbO3 substrate, whith an external electric field applied in parallel with the optical axis. The numerical results obtained with the finite difference method show that a wide range of splitting ratios can be obtained with moderate drive voltages and that the splitting characteristics are stable over a wide range of frequencies.