1-2hit |
Sompol KOSULVIT Monai KRAIRIKSH Chuwong PHONGCHAROENPANICH Toshio WAKABAYASHI
This paper presents a simple and cost-effective bidirectional antenna using a probe excited circular ring. The structure of the antenna is simple i.e., a linear electric probe surrounded by the circular ring. The principle of the antenna design is easy and straightforward. A choice of the ring radius is first chosen to achieve the condition that only the dominant mode can be propagated. Furthermore, it is found that for a specific ring radius, the radiation patterns of the antenna are varied as the ring width. Then, the optimum ring width that provides the maximum directivity is determined. The criterion of the selection of the ring width for various ring radii is illustrated as the guidelines for the antenna design. The fabricated antennas at the operating frequency of 1.9065 GHz are measured and compared with the theoretical predictions. It is apparent that these results are in reasonable agreement. The bidirectional pattern with the gain of 5.4 dBi over the bandwidth of 17% is obtained. Moreover, the antenna can be easily fabricated with the low production cost. Therefore, this antenna is suitable for installing at the base station in the street cell.
Keizo CHO Toshikazu HORI Hajime TOZAWA Shinji KIYA
This paper proposes a novel bidirectional rod antenna (BIRA) comprising a collinear antenna and parasitic wires as a base station antenna for a street microcell. The spacing between the collinear antenna and the parasitic wire, and the length of the parasitic wires, which are the design parameters obtaining a bidirectional pattern, are investigated using the moment method. The results show that wide spacing enlarges the bandwidth obtaining the bidirectional pattern, however it decreases the gain. Furthermore, to enlarge the bandwidth, a BIRA with arc parasitic plates whose radius is the same as that of the radome is also proposed. The configuration can be constructed using the same exterior as the BIRA with parasitic wires. It is also shown that the arc parasitic plates enlarge the bandwidth in proportion to the area projected onto the tangential plane at the center of the arc. Finally, a prototype of the proposed antenna is shown.