The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] branches(4hit)

1-4hit
  • Progress in THz Generation Using Josephson Fluxon Dynamics in Intrinsic Junctions

    Myung-Ho BAE  Hu-Jong LEE  

     
    INVITED PAPER

      Vol:
    E89-C No:2
      Page(s):
    106-112

    Collective transverse plasma modes in Bi2Sr2CaCu2O8+x intrinsic Josephson junctions (IJJs) can be excited by the moving fluxon lattices. Progressive transformation of the standing-wave-like fluxon-lattice configuration from a triangular lattice to a rectangular lattice takes place as the dynamic fluxon-lattice modes are in resonance with the collective transverse plasma modes. In this paper, we review the progress in terahertz-frequency-range electromagnetic wave generation from the IJJs using the resonance between moving fluxon lattice and the collective transverse plasma modes.

  • EM Radiated Field by a Branched and Tortuous CG Discharge, Even Considering a Direct Stroke on an Aircraft

    Edoardo ALFASSIO GRIMALDI  Morris BRENNA  Fulvio MARTINELLI  Riccardo Enrico ZICH  

     
    PAPER-Others

      Vol:
    E88-B No:8
      Page(s):
    3300-3306

    This paper studies the electromagnetic field radiated by a return stroke, considering even the case of a direct lightning on an aircraft, in the Fraunhofer region. The work here presented is an analysis of a complete discharge case, considering the electric field due to some charged clouds, the presence of a conductive airplane immersed in this external electric field, the channels related to the lightning paths, and the interactions of the field due to the lightning return stroke with a far field located victim system. It could be divided in several steps. Firstly, the cloud-generated electric field has been calculated, and a particular model of the clouds has been introduced. For what concerns the geometrical considerations, a Koch's snowflake shaped cloud has been chosen, in order to achieve a complex geometrical model. To better fit this model with the reality a non-symmetric cloud has been created. Then, a simple aircraft model, according to those reported in literature, has been introduced. The conductive structure of the aircraft interacts with the atmospheric electric field and modifies its distribution. Furthermore, applying a boundary panel method, frequently used in subsonic incompressible aerodynamics, Laplace's equation for the electrostatic potential in the considered domain has been computed, taking into account the presence of the metallic structure. Finally, the inception points on the outer surface of the aircraft are calculated and highlighted. Beginning from those points, in which the probability of discharge is higher, a suitable lightning channel has been created, and the shape of the jagged field signal has been correlated to the tortuous path discharge, even considering the presence of branches. The total electric field given by the first discharge from the cloud to the airplane, by the second discharge from the aircraft to the ground and by the current flowing along the fuselage has been computed and calculated in a far field located observation point.

  • Bifurcation Analysis of Nonlinear Resistive Circuits by Curve Tracing Method

    Lingge JIANG  Akio USHIDA  

     
    PAPER-Nonlinear Problems

      Vol:
    E78-A No:9
      Page(s):
    1225-1232

    In this paper, we discuss computational methods for obtaining the bifurcation points and the branch directions at branching points of solution curves for the nonlinear resistive circuits. There are many kinds of the bifurcation points such as limit point, branch point and isolated point. At these points, the Jacobian matrix of circuit equation becomes singular so that we cannot directly apply the usual numerical techniques such as Newton-Raphson method. Therefore, we propose a simple modification technique such that the Newton-Raphson method can be also applied to the modified equations. On the other hand, a curve tracing algorithm can continuously trace the solution curves having the limit points and/or branching points. In this case, we can see whether the curve has passed through a bifurcation point or not by checking the sign of determinant of the Jacobian matrix. We also propose two different methods for calculating the directions of branches at branching point. Combining these algorithms, complicated solution curves will be easily traced by the curve tracing method. We show the example of a Hopfield network in Sect.5.

  • Analysis of Multiple Reflections by Transfer Functions of Transmission Line Networks with Branches and Its Application

    Iwata SAKAGAMI  Akihiro KAJI  Tomoaki USAMI  

     
    PAPER

      Vol:
    E75-B No:3
      Page(s):
    157-164

    Networks in this paper consist of non-commensurate transmission lines with branches and branching resistors at junctions. When signals on a transmission line are divided multiple ways at the junctions of branched lines, multiple reflection waves occur by the impedance mismatching. For the analysis of multiple reflections and network design, lattice diagrams have been used so far. However, the expansions of network transfer functions provide an easier way for the same purpose as in the case of lattice diagram. The output transient responses can be directly calculated from the expansions of network transfer functions or can be numerically calculated by software such as the fast Laplace transform. Therefore, once the network transfer functions are given, calculation of transient responses can be carried out quite easily. In this paper, the expansions of network transfer functions have been derived with respect to delay elements ξi=exp(-sτi) by formularizing the propagation of multiple reflection waves, and then the multi-variable rational network transfer functions have been obtained from the expansions. As an example, a 3-port transmission line network with normalized characteristic impedances 1, 1, 6 and normalized branching resistors 1/23, 1/23, 126/23 has been taken up. As the terminal resistances at output ports can be determined from the relation of the first arriving wave to the steady state, the design of 3-port transmission line networks which will furnish output waveforms similar to the waveform of the input within given tolerances has been considered. The output waveforms have been calculated for pure terminal resistances and for the pure terminal resistances plus parasitic parallel capacitances.