The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] broadband packet wireless access(14hit)

1-14hit
  • Field Experiments on Throughput Performance above 100 Mbps in Forward Link for VSF-OFCDM Broadband Wireless Access

    Yoshihisa KISHIYAMA  Noriyuki MAEDA  Kenichi HIGUCHI  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    604-614

    This paper presents throughput performance along with power profiles in the time and frequency domains over 100 Mbps based on field experiments using the implemented Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) transceiver with a 100-MHz bandwidth in a real multipath fading channel. We conducted field experiments in which a base station (BS) employs a 120-degree sectored beam antenna with the antenna height of 50 m and a van equipped with a mobile station (MS) is driven at the average speed of 30 km/h along measurement courses that are approximately 800 to 1000 m away from the BS, where most of the locations along the courses are under non-line-of-sight conditions. Field experimental results show that, by applying 16QAM data modulation and Turbo coding with the coding rate of R = 1/2 to a shared data channel together with two-branch antenna diversity reception, throughput over 100 and 200 Mbps is achieved when the average received signal-to-interference plus noise power ratio (SINR) is approximately 6.0 and 14.0 dB, respectively in a broadband channel bandwidth where a large number of paths such as more than 20 are observed. Furthermore, the location probability for achieving throughput over 100 and 200 Mbps becomes approximately 90 and 20% in these measurement courses, which experience a large number of paths, when the transmission power of the BS is 10 W with a 120-degree sectored beam transmission.

  • Variable Spreading and Chip Repetition Factors (VSCRF)-CDMA in Reverse Link for Broadband Packet Wireless Access

    Yoshikazu GOTO  Teruo KAWAMURA  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    509-519

    This paper proposes Variable Spreading and Chip Repetition Factors (VSCRF)-Code Division Multiple Access (CDMA) broadband packet wireless access in the reverse link, which flexibly supports employing the same air interface in various radio environments such as a cellular system with a multi-cell configuration and local areas such as very-small cell, indoor, and isolated-cell environments. In VSCRF-CDMA, we propose two schemes: the first is a combination of time-domain spreading with an orthogonal code and chip repetition that achieves orthogonal multiple access in the frequency domain by utilizing a comb-shaped frequency spectrum, and the other is adaptive control of the spreading factor and chip repetition factor according to the cell configurations, number of simultaneously accessing users, propagation channel conditions, and major radio link parameters. Simulation results show that the proposed VSCRF-CDMA associated with the combination of the spreading factor, SFD, of four and the chip repetition factor, CRF, of four improves the required average received signal energy per bit-to-noise power spectrum density ratio (Eb/N0) for the average packet error rate of 10-2 by approximately 2.0 dB compared to DS-CDMA only employing SFD = 16 assuming four simultaneously accessing users in an exponentially decaying six-path Rayleigh fading channel with two-branch diversity reception.

  • Cell Selection Based on Shadowing Variation for Forward Link Broadband OFCDM Packet Wireless Access

    Akihito MORIMOTO  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER-Cell Selection

      Vol:
    E88-B No:1
      Page(s):
    150-158

    This paper proposes cell selection (CS) based on shadowing variation for the forward-link Orthogonal Frequency and Code Division Multiplexing (OFCDM) packet wireless access. We clarify its effects using a broadband propagation channel model in a comparison with fast cell selection (FCS), which tracks the instantaneous fading variation, and with the conventional slow CS, which tracks only the distance-dependent path loss, based on radio link level simulations that take into account time-varying instantaneous fading and shadowing variations. The simulation results show that the achievable throughput with FCS improves slightly in a broadband channel with an increasing number of paths when the average path-loss difference between two cells is greater than 2 dB. Nevertheless, we show that the optimum CS interval becomes approximately 100 msec, because the interval can track the time-varying shadowing variation considering low-to-high mobility up to the maximum Doppler frequency of 200 Hz. Consequently, we show that the throughput by employing the CS based on shadowing variation with the selection interval of 100 msec is increased by approximately 5 and 15% compared to that using the conventional slow CS with the selection interval of 1 sec, for the maximum Doppler frequency of 20 and 200 Hz, respectively.

  • Radio Link Capacity Comparison between MC/DS-CDMA and MC-CDMA in Reverse Link Broadband Wireless Access

    Shingo SUWA  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1645-1655

    This paper compares the radio link capacity between multi-carrier/DS-CDMA (MC/DS-CDMA) and multi-carrier CDMA (MC-CDMA) for reverse-link broadband packet wireless access taking into consideration: the asynchronous signal reception at the receiver; the path timing or symbol timing detection of all major subject factors; and the channel estimation error. Simulation results show that although the influence of the asynchronous signal reception on the packet error rate (PER) performance in MC-CDMA is slight, the degradation caused by the channel estimation error in MC-CDMA is severe compared to that caused by the path timing detection error in MC/DS-CDMA. Consequently, the required average received signal energy per bit-to-background noise spectrum density ratio (Eb/N0) at the average PER of 10-2 in MC/DS-CDMA is reduced by approximately 4.5 dB compared to that in MC-CDMA assuming a 12-path exponential decayed Rayleigh fading channel. Furthermore, the number of accommodated users in MC/DS-CDMA is 2.5 fold greater than that in MC-CDMA employing two-branch antenna diversity reception. Therefore, we conclude that MC/DS-CDMA is more appropriate than MC-CDMA for the reverse link broadband packet wireless access, and that it has advantageous features such as an inherently much lower peak-to-average power ratio compared to MC-CDMA, which accompanies a high peak-to-average power ratio causing an increase in the back-off of the power amplifier.

  • Efficient Random Access Channel Transmission Method Using Packet Retransmission According to QoS

    Yousuke IIZUKA  Motohiro TANNO  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1669-1675

    This paper proposes an efficient random access channel (RACH) transmission method that utilizes soft-combined consecutively retransmitted message data packets according to the Quality of Service (QoS) requirements for broadband multi-carrier/DS-CDMA (MC/DS-CDMA) in the reverse link. In the proposed scheme, the relative transmission power of a message from that of a successfully detected preamble for non-real time (NRT) type traffic data is significantly reduced by soft-combining several retransmitted message data packets thanks to time diversity since the delay requirement is relaxed. Meanwhile, for real time (RT) type traffic data, the relative transmission power of the message from that of the detected preamble is increased in order to reduce the packet error rate with a limited number of retransmissions. Simulation results elucidate that the total required average received signal energy per bit-to-background noise power spectrum density ratio (Eb/N0) for error-free transmission with time diversity for NRT type traffic data is reduced by more than 2 dB compared to that for conventional RACH without the relative transmission power control for a wide rage of fading maximum Doppler frequencies.

  • Adaptive Radio Parameter Control Considering QoS for Forward Link OFCDM Wireless Access

    Atsushi HARADA  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    314-324

    This paper proposes an adaptive radio parameter control scheme that utilizes an optimum radio parameter set comprising the maximum number of retransmissions in hybrid automatic repeat request (HARQ) in addition to the data modulation and channel coding scheme (MCS) according to the Quality of Service (QoS) requirements (i.e., the required packet error rate and delay) and propagation conditions such as the delay spread in the forward link of Orthogonal Frequency and Code Division Multiplexing (OFCDM) broadband wireless access. We elucidate by simulation evaluation that most of the optimum MCSs are common regardless of the delay requirement of traffic data, i.e., common between non-real time (NRT) and real-time (RT) class data. Concretely, the three MCSs of QPSK with the coding rate of R=1/2, 16QAM with R=1/2 and 3/4 are optimum ones, although the additional MCS of QPSK with R=1/3 is effective only for the RT class data in the lower received average received signal energy per symbol-to-background noise power density ratio (Es/N0) region. Furthermore, application of a much higher MCS set, 16QAM with R=5/6 and 64QAM with R=3/4, in addition to the three common MCSs improves the throughput under much higher Es/N0 conditions in a small delay spread environment. The simulation results show that the delay requirement, i.e., the maximum number of retransmissions, in HARQ does not affect the key radio parameter such as MCS, because of informative results such as a smaller number of retransmissions associated with a less-efficient MCS achieves a higher throughput than does using a more highly-efficient MCS allowing a larger number of retransmissions. Consequently, it is concluded that the proposed adaptive radio parameter control according to the QoS requirements substantially results in the selection of the optimum MCS irrespective of the delay requirement except for the extreme case where no retransmissions are allowed and for special propagation channel conditions.

  • Three-Step Cell Search Algorithm Exploiting Common Pilot Channel for OFCDM Broadband Wireless Access

    Motohiro TANNO  Hiroyuki ATARASHI  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    325-334

    This paper proposes a three-step cell search algorithm that utilizes only the common pilot channel (CPICH) in the forward link and employs spreading by a combination of a cell-specific scrambling code (CSSC) and an orthogonal short code for Orthogonal Frequency and Code Division Multiplexing (OFCDM) broadband packet wireless access. In the proposed cell search algorithm, the OFCDM symbol timing, i.e., Fast Fourier Transform (FFT) window timing, is estimated by detecting the guard interval timing in the first step. Then, in the second step, the frame timing and CSSC group are simultaneously detected by taking the correlation of the CPICH based on the property yielded by shifting the CSSC phase in the frequency domain. Finally, the CSSC within the group is identified in the third step. The most prominent feature of the proposed cell search algorithm is that it does not employ the conventional synchronization channel (SCH), which is exclusively used for the cell search. Computer simulation results elucidate that when the transmission power ratio of the CPICH to one code channel of the traffic channel (TCH) is 12 dB, the proposed cell search method achieves faster cell search time performance compared to the conventional method using the SCH with the transmission power ratio of the SCH to one code channel of the TCH of 6 dB. Furthermore, the results show that it can accomplish the cell search within 1.7 msec at 95% of the locations in a 12-path Rayleigh fading channel with the maximum Doppler frequency of 80 Hz and the r.m.s. delay spread of 0.32 µs.

  • Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) for Broadband Packet Wireless Access

    Hiroyuki ATARASHI  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    291-299

    This paper proposes Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) as the most promising forward link wireless access method in broadband packet wireless transmission using an approximate 50 to 100 MHz bandwidth. The proposed OFCDM employing VSF can flexibly realize near optimum wireless access satisfying higher radio link capacity both in isolated cell environments such as hot-spot areas and indoor offices and in multi-cell environments such as cellular systems by adaptively changing the appropriate spreading factor, SF, in the frequency domain based on the cell structure, radio link conditions such as the delay spread, and major radio link parameters such as the data modulation scheme and channel coding rate. Furthermore, by establishing SF=1, i.e., no spreading mode, VSF-OFCDM can be used as orthogonal frequency division multiplexing (OFDM). Computer simulation results demonstrate that, while SF=1 (OFDM) achieves higher link capacity than SF>1 in an isolated-cell environment, OFCDM with the optimized SF value over 1 achieves approximately 1.4 times higher capacity compared with OFDM in a multi-cell environment associated with the advantageous one-cell frequency reuse. Consequently, VSF-OFCDM can provide seamless deployment of broadband packet wireless access with higher radio link capacity, that is, OFDM in an isolated-cell environment, and OFCDM with the adaptively optimized SF value over 1 in a multi-cell environment according to the major radio link conditions and radio link parameters, by only changing the spreading factor.

  • Investigation of Inter-Carrier Interference due to Doppler Spread in OFCDM Broadband Packet Wireless Access

    Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2684-2693

    This paper investigates the impact of inter-carrier interference (ICI) due to Doppler spread on the packet error rate (PER) performance in Orthogonal Frequency and Code Division Multiplexing (OFCDM) packet wireless access employing turbo coding in a multipath fading channel, and describes the optimization of the sub-carrier spacing, Δ f, i.e., the number of sub-carriers, Nc, with an approximate 50-100 MHz bandwidth. Simulation results show that although the uncoded OFCDM in a 1-path flat Rayleigh fading channel is affected by the ICI caused by the Doppler spread when the maximum Doppler frequency, fD, becomes more than 5% of Δ f, OFCDM employing turbo coding in a 24-path Rayleigh fading channel is robust against Doppler spread and the degradation is not apparent until fD reaches more than 10% of Δ f. This is because the turbo coding gain and the frequency diversity effect compensate for the degradation due to ICI. Meanwhile, the PER performance with a larger Nc is degraded, since the effect of the error correction capability becomes smaller due to the larger variance of the despread OFCDM symbols associated with the narrower spreading bandwidth in the frequency domain. Consequently, along with the packet frame efficiency for accommodating the guard interval to compensate for the maximum multipath delay time of 1 µsec, we clarify that the optimum number of sub-carriers is approximately 512-1024 (the corresponding Δ f becomes 156.3-78.1 kHz) for broadband OFCDM packet wireless access assuming a 50-100 MHz bandwidth.

  • Three-Step Cell Search Algorithm Employing Synchronization and Common Pilot Channels for OFCDM Broadband Wireless Access

    Yukiko ISHII  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2672-2683

    This paper proposes a three-step cell search algorithm utilizing a synchronization channel (SCH) and common pilot channel (CPICH) in the forward link for OFCDM (Orthogonal Frequency and Code Division Multiplexing) broadband packet wireless access, and evaluates the cell search time performance by computer simulation. In the proposed three-step cell search algorithm, the OFCDM symbol timing, i.e., Fast Fourier Transform (FFT) window timing is estimated employing SCH or guard interval (GI) correlation in the first step. Then, the frame timing is detected by employing the SCH and the cell-specific scrambling code (CSSC) is identified by the CPICH in the second and third steps, respectively. Computer simulation results elucidate that the proposed three-step cell search algorithm achieves fast cell search time performance, i.e., cell detection probability of 90% within approximately 50 msec, assuming the number of CSSCs of 512 in a 19 hexagonal-cell model. We also clarify that there is no prominent difference in cell search time performance between the two employed SCH structures, time-multiplexed and frequency-multiplexed, assuming that the total transmit power of the SCH is the same. Based on the comparison of four substantial cell search algorithms, the GI-plus-SCH correlation method, in which FFT windowing timing detection, frame timing detection, and CSSC identification are performed by GI correlation, frequency-multiplexed SCH, and CPICH, respectively, exhibits the cell search time of approximately 44 msec at the detection probability of 90% with an optimized averaging parameter in each step.

  • Optimum Bandwidth per Sub-Carrier of Multicarrier/DS-CDMA for Broadband Packet Wireless Access in Reverse Link

    Shingo SUWA  Hiroyuki ATARASHI  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1624-1634

    This paper elucidates the optimum bandwidth per sub-carrier in the reverse link for multicarrier (MC)/DS-CDMA using a 10 to 80-MHz bandwidth in a multipath fading channel with numerous resolved multipaths, taking into account all major effects, i.e., the improvement in the Rake time diversity effect and the degradation in the path search and the channel estimation due to multipath interference (MPI). In the paper, we assume a broadband channel model with the maximum delay time of up to approximately 1 µsec simulating a microcell with the radius of less than 1 km in an urban area. The simulation results clarify that the improvement in the radio link performance is almost saturated at a bandwidth greater than approximately 40 MHz when the spreading factor of the channel is SF=32, and the best performance is achieved at the bandwidth of approximately 20-40 MHz when SF=4, employing two-branch antenna diversity reception (an average equal power delay profile and an exponential decay power delay profile are assumed, where the number of multipaths is changed from 12 to 48 for both profiles). This is generated by the tradeoff between the improvement in the Rake time diversity effect and the increased MPI in addition to the degradation in accuracy of the path search and channel estimation associated with a lower average received signal-to-interference plus background noise power ratio. Therefore, we conclude that MC/DS-CDMA, where each sub-carrier has the bandwidth of approximately 20-40 MHz, is one of the most promising candidates for broadband packet wireless access in the reverse link.

  • Pilot Channel Assisted MMSE Combining in Forward Link for Broadband OFCDM Packet Wireless Access

    Noriyuki MAEDA  Hiroyuki ATARASHI  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1635-1646

    This paper proposes a pilot channel assisted minimum mean square error (MMSE) combining scheme in orthogonal frequency and code division multiplexing (OFCDM) based on actual signal-to-interference power ratio (SIR) estimation, and investigates the throughput performance in a broadband channel with a near 100-MHz bandwidth. In the proposed MMSE combining scheme, the combining weight of each sub-carrier component is accurately estimated from the channel gain, noise power, and transmission power ratio of all the code-multiplexed channels to the desired one, by exploiting the time-multiplexed common pilot channel in addition to the coded data channel. Simulation results elucidate that the required average received signal energy per bit-to-noise spectrum density ratio (Eb/N0) for the average packet error rate (PER) = 10-2 is improved by 0.6 and 1.2 dB by using the proposed MMSE combining instead of the conventional equal gain combining (EGC) in a 24-path Rayleigh fading channel (exponential decay path model, maximum delay time is approximately 1 µsec) in an isolated cell environment, when the number of multiplexed codes = 8 and 32, respectively, with the spreading factor of 32. Furthermore, when the average received Eb/N0 = 10 dB, the achievable throughput, i.e., the number of simultaneously multiplexed codes for the average PER = 10-2 in the proposed MMSE combining, is increased by approximately 1.3 fold that of the conventional EGC.

  • Performance Evaluation of Coherent High-Speed TD-OFCDM Broadband Packet Wireless Access in Forward Link Employing Multi-Level Modulation and Hybrid ARQ

    Hiroyuki ATARASHI  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E84-A No:7
      Page(s):
    1670-1680

    This paper evaluates high-speed broadband packet wireless access in the forward link using coherent Time Division-Orthogonal Frequency and Code Division Multiplexing (TD-OFCDM) by applying time-multiplexed pilot symbol assisted channel estimation and integrating efficient multi-level modulation, hybrid automatic repeat request (ARQ), and code-multiplexing over a 50-100 MHz bandwidth. Computer simulation results first clarify that the common time-multiplexed pilot symbols with the transmit power of 6 dB higher than that of data symbols should be placed at both the beginning and end of a packet, and that the optimum averaging interval of channel estimates in the frequency domain is different according to the delay spread of a channel. Based on these optimized parameters for packet transmission, we show that the orthogonality among the code-multiplexed channels is destroyed due to severe frequency selective (multipath) fading and the accumulation of spread signals using equal gain combining (EGC) in the frequency domain. This degrades the achievable throughput performance especially when employing multi-level modulation and a high coding rate. Consequently, coherent TD-OFCDM with 8PSK data modulation and the convolutional coding of rate R = 2/3 employing sixteen-code multiplexing (spreading factor (SF) is 16) achieves the highest throughput of approximately 105 Mbps at the average received Eb/N0 (signal energy per bit-to-noise power spectrum density ratio) of approximately 24 dB in a 3-path Rayleigh fading channel (rms delay spread, σ= 0.1 µsec). Furthermore, in coherent TD-OFCDM with QPSK and R = 4/5 or 8PSK and R = 1/2, throughput performance greater than 80 Mbps is achieved at the average received Eb/N0 of approximately 20 dB even in a 24-path Rayleigh fading channel (σ= 0.2 µsec).

  • Performance of Coherent Multi-Carrier/DS-CDMA and MC-CDMA for Broadband Packet Wireless Access

    Sadayuki ABETA  Hiroyuki ATARASHI  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E84-B No:3
      Page(s):
    406-414

    This paper compares the packet error rate (PER) performance of three access schemes, i.e., single-carrier (SC)/DS-CDMA, multi-carrier (MC)/DS-CDMA, and MC-CDMA assuming an 80-MHz bandwidth in order to achieve an optimum broadband packet wireless access scheme. In a broadband propagation channel, severe multipath interference degrades the accuracy of timing detection of multipath components (path search) and channel estimation required for coherent detection. Computer simulation results show that, in the reverse link, SC/DS-CDMA achieves better performance than MC/DS-CDMA because the pilot signal power in one sub-carrier required for path search and channel estimation decreases as the number of sub-carriers increases. The superiority of MC-CDMA to MC (SC)/DS-CDMA in the forward link is also demonstrated, because frequency diversity is effectively utilized in association with the mitigation of a much longer symbol duration than the delay spread in MC-CDMA, meanwhile a higher degree of multipath interference offsets the Rake time diversity in MC (SC)/DS-CDMA in a broadband multipath fading channel.