The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] cell multiplexer(2hit)

1-2hit
  • A Novel Cell Scheduler with QoS Guarantee for Services in ATM Networks

    Wen-Tsuen CHEN  Rong-Ruey LEE  Horng-Jong LIN  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E82-B No:2
      Page(s):
    447-454

    Real-time services, including constant bit rate (CBR) and real-time variable bit rate traffic (rt-VBR), have become increasingly important owing to the rapid proliferation of multimedia applications. A cell multiplexing method capable of handling real-time traffic should satisfy related quality of service (QoS) requirements, including cell transfer delay (CTD), cell delay variation (CDV) and cell loss ratio (CLR). In this paper, we present an efficient cell multiplexing method, called longest delay beyond expectation (LDBE), to schedule real-time and non-real-time traffic in ATM networks. For the real-time traffic, LDBE scheme can minimize the CDV, and reduce the CLR and CTD, particularly when different CDV tolerance (CDVT) values are applied at each node along the path of a connection. Simulation results demonstrate that the proposed LDBE performs better than other multiplexing methods regarding these CLR, CDV and CTD criteria for real-time traffic. Furthermore, the proposed LDBE is also suitable for scheduling non-real-time traffic by providing a low CLR for non-real-time variable bit rate (nrt-VBR) and minimizing the CTD for unspecified bit rate (UBR) traffic.

  • Performance Analysis of ATM Cell Multiplexer with MMPP Input

    Jun Won LEE  Byeong Gi LEE  

     
    PAPER

      Vol:
    E75-B No:8
      Page(s):
    709-714

    This paper analyzes the performance of an ATM cell multiplexer with a two level MMPP input on a discrete-time basis. We approximated the input process as a simple MMPP model. We developed an MMPP/D/1/K queueing model for the ATM cell multiplexer, and employed an analytic approach for the evaluation of cell loss probability. We verified the accuracy of the results using computer simulation. We applied the above analytic method to connection admission control (CAC) of the ATM network. The resulting connection admission control scheme employs the concept of the "effective bandwidth" and table-look-up procedure. We confirmed through a computer simulation that the proposed connection admission control scheme outperforms the peak bandwidth allocation scheme with respect to link utilization.