1-2hit |
We propose a call admission control scheme in cellular and wireless local area networks (WLANs) integration: integrated service-based admission control with load-balancing capability (ISACL). The novel aspects of the ISACL scheme include that load transfer in the cellular/WLAN overlapping areas is allowed for the admission of originating data calls from the area with cellular access only and vertical handoff requests to the cellular network. Packet-level quality of service (QoS) constraints in the WLANs and other-cell interference in the code division multiple access (CDMA) cellular network are taken into account to derive the WLANs and cellular capacity. We model the integrated networks using a multi-dimensional Markov chain and the important performance measures are derived for effective optimization of the admission parameters. The analytical model is validated by a computer simulation. The variation of admission parameters with traffic load and the dependence of resource utilization on admission parameters are investigated. It is shown that optimal balancing of the traffic load between the cellular network and WLANs results in the maximum resource utilization. Numerical results demonstrate that substantial performance improvements can be achieved by applying the proposed ISACL scheme.
We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.